

TFCG Technical Paper 37 THE BIODIVERSITY AND FOREST CONDITION OF RUVU SOUTH FOREST RESERVE

By J. Gwegime, M. Mwangoka, E. Mulungu, A. Perkin and K. Nowak

Dar es Salaam

2013

© Tanzania Forest Conservation Group
Cover photographs by Andrew Perkin. Clockwise from top left. 1. View over Ruvu South Forest Reserve. 2. Charcoal kiln in preparation in Ruvu South F.R. 3. Rondo galago. 4. Four-toed Elephant-shrew.
Suggested citation:
Gwegime, J., Mwangoka, M., Mulungu, E., Perkin A. and K. Nowak (2013). The biodiversity and forest condition of Ruvu South Forest Reserve. TFCG Technical Paper 37. DSM, Tz. 1-72 pp.

Executive Summary

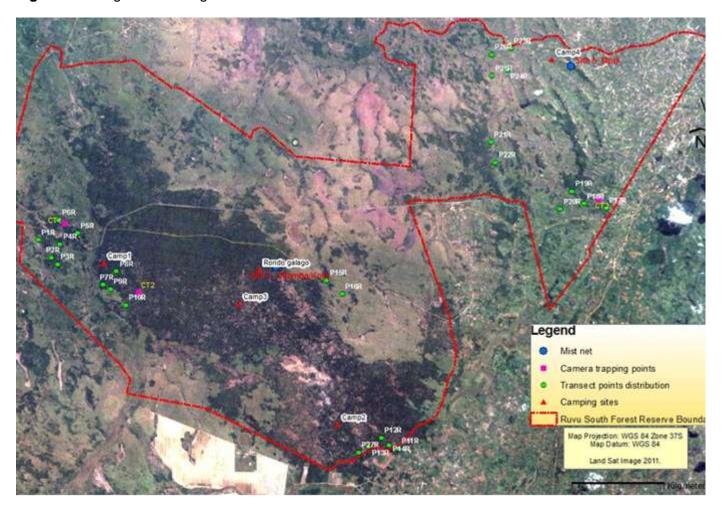
Ruvu South is one of the most important coastal forests in Tanzania. It is a large forest (320km²) relative to other coastal forest fragments in Tanzania (most of which measure less than 20km²). It lies 45km west of Dar es Salaam and is therefore under constant pressure from the illegal production of charcoal to supply the city's markets. Deforestation rates in Ruvu South Forest Reserve reached 7 % per annum between 2008 – 2010.

Ruvu South FR supports four Eastern Arc and Coastal Forest endemic vertebrates; it is contained in the Kisarawe District Coastal Forest Important Bird Area (Baker & Baker, 2002) hosting a number of rare and low-density forest bird species; and 33 plant species endemic to the Swahili Regional Centre of Endemism (IUCN, 2010).

Between 2001 - 2005 three NGOs (CARE, WCST and TFCG) implemented the Misitu Yetu Project to increase community capacity to manage Ruvu South Forest Reserve. The project supported the establishment of joint forest management including preparation of management plans, by-laws and joint management agreements that were approved by the Districts but were never signed by the Forestry and Beekeeping Division. In 2008, as part of the Mama Misitu campaign launch, the late Wangari Maathai visited Ruvu South FR as the guest of the Director of the Forestry and Beekeeping Division.

Between 2011 – 2013, as part of the Forest Justice in Tanzania project TFCG assessed the fauna and flora of targeted coastal forests and measured rates of human disturbance within these Forest Reserves. As part of this effort, five sites in Ruvu South FR were surveyed with a combination of systematic and opportunistic survey methods.

At these five sites, TFCG recorded 149 plant species in 130 genera and 50 families, with four dominant plant families, Leguminaceae (25 spp.), Rubiaceae (14 spp.), Euphorbiaceae (11 spp.) and Annonaceae (9 spp.).


In total, 21 mammal species were recorded. Three camera traps (CTs) stationed in Ruvu South FR for 30+ days captured seven mammal species from five families including two species of elephant shrew, Blotched genet, African civet, Suni, Bushy-tailed mongoose and Giant pouched rat. The CTs also captured a monitor lizard and two birds, a dove and a francolin. The highest camera trapping rate was of Four-toed elephant-shrews (274 of the 327 images, or 84%). Giant pouched rats (18 images), Suni (13 images) and Rufous and black elephant-shrews (12 images) were the three most commonly photographed mammals after four-toed elephant shrews. On mammal transects, sightings, sounds and/or signs of Sykes monkeys, yellow baboons, red duiker, bushbuck, warthog, suni and elephant shrew were recorded; in addition, opportunistic records of buffalo, aardvark, hyena, bushpig, hare and hyrax signs were made along disturbance transects. During nocturnal surveys, the Tanzanian Coastal forest endemic and Critically Endangered Rondo galago was observed (at Mtamba / Chakenge), and the Zanzibar galago was also detected.

In 99 hours of opportunistic bird surveys, 39 families, 67 genera and 88 species were recorded including two red-listed species, the bateleur (NT) and East Coast akalat (NT).

A total of 5521 disturbance events were recorded along the 13 transects at five sites with an overall disturbance rate of 425 events per hectare. Across the five sites, Mtamba/Kola (good forest) was most disturbed overall with 1427 disturbance events or 26% of the total (764 poles, 495 timber and 168 other disturbances) and a disturbance rate of 476 events/ha. Charcoal kilns were the most frequent disturbance type throughout the forest reserve.

Forest loss is occurring at a rapid rate, and a coordinated effort is needed to halt further destruction in Ruvu South FR and concomitant loss of fauna and flora of global conservation importance.

Figure 1. Google Earth image of Ruvu South Forest Reserve in 2011.

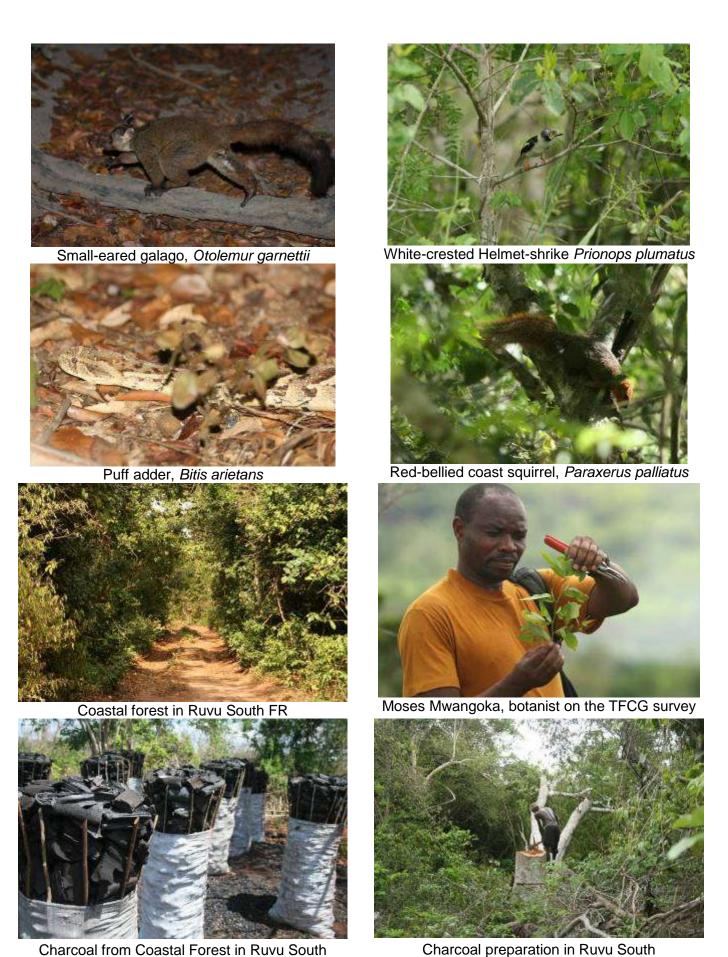


Figure 2. Survey photographs from Ruvu South Forest Reserve by Andrew Perkin.

Tanzania Forest Conservation Group

The Tanzania Forest Conservation Group (TFCG) is a Tanzanian non-governmental organization that has been promoting the conservation of Tanzania's forests since 1985. TFCG's mission is to conserve and restore the biodiversity of globally important forests in Tanzania for the benefit of present and future generations. We achieve this through capacity building, advocacy, research, community development and protected area management, in ways that are sustainable and foster participation, cooperation and partnership.

TFCG supports field-based projects promoting participatory forest management, environmental education, community development, advocacy and research in the Eastern Arc Mountain and East African Coastal Forests. To find out more about TFCG please visit our website http://www.tfcg.org.

Forest Justice in Tanzania

Forest Justice in Tanzania (FJT) was a three year project (2011-2013) that aims to promote improved governance and increased accountability in Tanzania's forest sector. The initiative was a partnership between the Community Forest Conservation Network of Tanzania, known as MJUMITA and the Tanzania Forest Conservation Group (TFCG). The project operated through four inter-related strategies: 1) monitoring forest governance and forest condition; 2) promoting enforcement; 3) conducting research, analysis and communication; and 4) setting standards. The project is financed by DfID through the Accountability in Tanzania programme (AcT). For more information about the project, please visit http://www.tfcg.org/publications.html.

Abbreviations and Acronyms

AcT Accountability in Tanzania programme

a.s.l. above sea level

dbh diameter at breast height

DSM Dar es Salaam

FBD Forestry and Beekeeping Division

FJT Forest Justice in Tanzania

FR Forest Reserve GR Game Reserve

IUCN International Union for the Conservation of Nature

JFM Joint Forest Management MOBOT Missouri Botanical Garden

MJUMITA Mtandao wa Jamii wa Usimamizi wa Misitu, Tanzania (Community Forestry Network or Tz)

TFCG Tanzania Forest Conservation Group
WCST Wildlife Conservation Society of Tanzania

Acknowledgements

Funding

This survey was funded by Accountability in Tanzania (ACT) through the project 'Forest Justice in Tanzania'.

Permission

This survey was conducted with permission from the Tanzania Forest Sector (TFS) of the Ministry of Natural Resource and Tourism, the Tanzania Wildlife Research Institute (TAWIRI), and the Tanzania Commission of Science and Technology (COSTECH).

Survey Team

Team leader: Justine Gwegime

Primates and ungulates surveyors: Mokolo Kitenana and Reuben Mwakisoma

Nocturnal primates: Andrew Perkin

Ornithologist: Elia Mulungu

Forest disturbances surveyor: Justine Gwegime

Botanist: Moses Mwangoka

Survey assistants: Stanley Mhando, Subira Juma and Yahaya Mtonda

Forest change analysis: Theron Morgan-Brown

Additionally we are extremely grateful to the people of Kibaha district specifically the communities around Ruvu South Forest Reserve for their extraordinary co-operation in carrying out this research. In particular, we thank the Ruvu South Forest Manager, Mr. Moses Mashala.

Report writing

This report has been written by Justine Gwegime, Nike Doggart, Moses Mwangoka, Elia Mulungu, Mokolo Kitenana, and Reuben Mwakisoma.

Report editing

The overall report editing was carried out by Katarzyna Nowak and Nike Doggart.

Maps

We are grateful to Sylvia Monica Kalemera and Katarzyna Nowak for the production of the maps included in this report; and to Theron Morgan-Brown for the forest change analysis.

Table of Contents

Executive Summaryiii	
Abbreviations and Acronymsvii	
Acknowledgementsviii	
List of Figuresx	
1) Introduction1	
1.1 Background to the surveys	1
1.2 Report structure	
1.4 Overview of Ruvu South Forest Reserve	
1.4.1 Biodiversity and ecological value of Ruvu South Forest Reserve	1
1.4.2 Deforestation in Ruvu South Forest Reserve	2
2) Forest Reserve Description5	
2.1 General description	5
2.2 Vegetation	6
2.3. Climate	6
3) Survey Sites7	
4) Mammals8	
4.1 Background	
4.2 Objectives	8
4.3 Methods	
4.3.1 Transects	8
4.3.2 Camera traps	
5.3.3 Galago surveys	
4.4 Results	
4.4.1 Transects	9
4.4.2 Camera traps	
5.4.3 Galago surveys	
4.5 Discussion	11
5) Birds12	
5.1 Background	
5.2 Objectives	
5.3 Methods	
5.3.1 Observations	
5.3.2 Mist netting	
5.3.3 Sites	
5.4 Results	
5.5 Discussion	16
6) Forest Disturbance17	
6.1 Background	
6.2 Objectives	
6.3 Methods	
6.4 Results	
6.4.1 Pole extraction	
6.4.2 Timber extraction	
6.4.3 Other disturbance	20
6.5 Discussion	21
7) Conclusions and Recommendations22	
8) References23	
Appendices24	
Appendix I: Disturbance Transect 1	
Appendix 2: Disturbance Transect 2	
Appendix 3: Disturbance Transect 3	
Appendix 4: Disturbance Transect 4	
Appendix 5: Disturbance Transect 5	32

Appendix 6: Disturbance Transect 6	34
Appendix 7: Disturbance Transect 7	36
Appendix 8: Disturbance Transect 8	38
Appendix 9: Disturbance Transect 9	40
Appendix 10: Disturbance Transect 10	42
Appendix 11: Disturbance Transect 11	44
Appendix 12: Disturbance Transect 12	46
Appendix 13: Disturbance Transect 13	48
List of Tables	
Table 1. Transects along which primates and forest antelopes were surveyed	8
Table 2. Locations of camera trapping sites in Ruvu South FR	8
Table 3. Mammals recorded on transects	
Table 4. Species caught on camera trap in Ruvu South FR in November-December 2011	
Table 5. Bird survey sampling intensity (mist netting)	12
Table 6. Checklist of 88 bird species recorded in five different sites of Ruvu South FR	13
Table 7. Total number of disturbance transects carried out in RSFR	
Table 8. Details of disturbance transects including the length of each transect, its start and end points,	
orientation and habitat types	
Table 9. Summary of results from disturbance surveys	19
List of Figures	
Figure 1. Google Earth image of Ruvu South Forest Reserve in 2011	iv
Figure 2. Survey photographs from Ruvu South Forest Reserve by Andrew Perkin	
Figure 3. Forest cover analysis based on 1995 Landsat image produced by the Misitu Yetu Project	
Figure 4 Ruvu South forest cover in 2000 (a) and 2011 (b).	
Figure 5. Map showing location of Ruvu South Forest Reserve in Coast Region	5
Figure 6. Location of study sites and disturbance transects.	
Figure 7. Camera trap photographs from Ruvu South FR	10
Figure 8. Number of live, naturally dead, old cut and fresh cut poles recorded in RSFR	
Figure 9. Number of live, naturally dead, old cut and fresh cut timber recorded in RSFR	
Figure 10. Other disturbances recorded in RSFR	21

1) Introduction

1.1 Background to the surveys

As part of the Forest Justice in Tanzania project, the Tanzania Forest Conservation Group (TFCG) has been carrying out biodiversity and forest condition surveys in selected forests in the Eastern Arc Mountains and Coastal Forests. The aim of the surveys is to document the biodiversity values and the levels of resource use and disturbance of these target forests.

The overall objective of the survey in Ruvu South Forest Reserve was to provide an up-to-date assessment of the biodiversity value and condition of this forest. Specific objectives were: i.To assess the status of primates, forest antelopes, and birds in Ruvu South Forest Reserve and the extent of endemism still supported by this forest and ii. To evaluate the current extent of forest disturbance and make site-level recommendations for improving protection and management.

1.2 Report structure

This report has 7 sections. The report begins with an executive summary followed by an introduction which includes a description of Ruvu South Forest Reserve, its biodiversity value and current threats. This section also includes a brief review of previous surveys and conservation efforts conducted in this forest. Scientific names of animal 7species are given, along with their IUCN Red List category of threat, if the species has been evaluated for the Red List (IUCN, 2012). These categories are abbreviated as follows: LC for Least Concern, DD for Data Deficient, NT for Near Threatened, VU for Vulnerable, EN for Endangered and CR for Critically Endangered (*ibid*.).

Section 2 provides a description of the forest reserve, including its location and management. Section 3 describes the survey sites at which the mammal, avian and disturbance surveys were carried out. Section 4 the camera trap and mammal transect results, Section 5 the birds, and section 6 forest disturbance, with each of these sections containing background information, objectives, methods, results and a discussion. In Section 7, a summary of conclusions and recommendations is given. Section 8 contains a bibliography of references cited within the text, and lastly, the Appendices provide tables of raw data collected during the forest disturbance surveys. Results of the botanical surveys will be published in a separate report.

1.4 Overview of Ruvu South Forest Reserve

Ruvu South is regarded as one of the most important coastal forests in Tanzania. The reserve is a 32,000ha mosaic of forest, woodland, thicket, swamp and grassland. Although close to both Pugu (2,180ha) and Kazimzumbwi (4,887ha) Forest Reserves, the forest composition of Ruvu South differs given historic selective logging within each of these reserves combined with unique soil and groundwater conditions (Birdlife, 2012). Ruvu forest spans Kibaha and Kisarawe Districts, Coast Region, and incorporates the former Banda and Kola Forest Reserves (Clarke & Dickinson, 1995). Ruvu is under extreme pressure from illegal logging and charcoal production. In addition, railway and road systems pass through it.

Since 1999, TFCG has been working with communities and other stakeholders in the area to establish Joint Forest Management (JFM) to empower local people to manage the reserve in partnership with the government and improve the management of the forest, including patches of forest adjacent to the reserve. The forest is an important resource for the surrounding communities and nationally important for water catchment.

1.4.1 Biodiversity and ecological value of Ruvu South Forest Reserve

The rich avifauna of Ruvu and other coastal forests of the Kisarawe District Coastal Forest IBA have been surveyed by Baker and Baker (2002) and Frontier-Tanzania. Twenty-five bird species including the Uluguru

violet-backed sunbird *Anthreptes neglectus*, pale batis *Batis soror*, southern banded snake eagle *Circaetus fasciolatus*, east coast akalat *Sheppardia gunningi*, sokoke pipit *Anthus sokokensis*, and spotted ground thrush *Zoothera guttata* have been recorded in this IBA.

Ruvu South, like other coastal forests, is important for endemic and near-endemic elephant shrews such as *Rhynchocyon petersi*. Little is known about the reserve's bats and galagos. A population of elephant *Loxodonta africana* (VU) was associated with Ruvu South until c. 2004 purportedly moving between Ruvu forest and the northern approaches of the Selous Game Reserve (Birdlife, 2012). Other mammals that had been recorded within the reserve include four diurnal primates, black and white colobus *Colobus angolensis palliates*, yellow baboons *Papio cynocephalus*, Sykes monkeys *Cercopithecus mitis*, and vervet monkeys *C. aethiops pygerythrus*; the scrub hare *Lepus saxatalis*; red-legged sun squirrel *Heliosciurus rufobrachium*; and spotted hyaena *Crocucta crocuta*. A total of 36 mammal species in 31 genera and 19 families have been recorded including the vulnerable little-collared fruit bat *Myonycteris relicta* and vulnerable lesser poached rat *Beamys hindei* (Frontier Tanzania, unpublished report).

1.4.2 Deforestation in Ruvu South Forest Reserve

Conservation efforts in Ruvu South FR have included the Ruvu Fuelwood Pilot Project, a project of the Forestry and Beekeeping Division, responsible for the management of the reserve. Since 2000, the Tanzania Forest Conservation Group has been promoting Joint Forest Management (JFM) at Ruvu South initially as part of the Misitu Yetu Project, a partnership between the Forestry and Beekeeping Division, Kibaha and Kisarawe District Councils, TFCG, the Wildlife Conservation Society of Tanzania and CARE-Tanzania. TFCG worked with the eight villages and one sub-village that surround the reserve (Kipangege, Kibwemwenda, Chakenge, Kifuru, Bokomnemela, Soga, Mpiji and Kola).

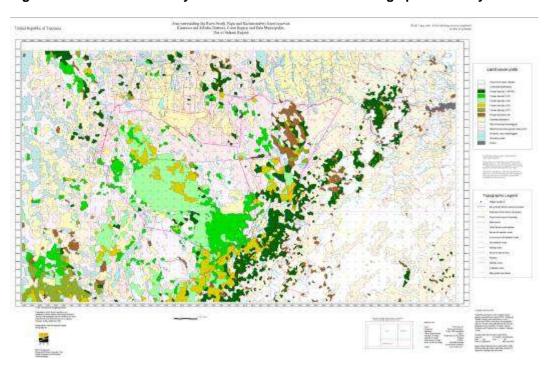


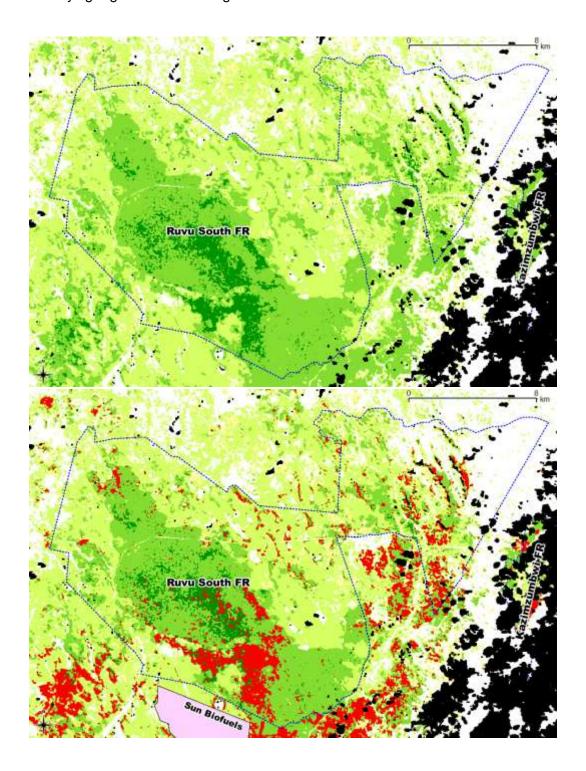
Figure 3. Forest cover analysis based on 1995 Landsat image produced by the Misitu Yetu Project.

Following the closure of the Misitu Yetu Project in 2005, TFCG continued to promote JFM under a new project 'CREATE', Conservation of Ruvu South Forest through Education, Advocacy, Tree planting and Elimination of Poverty. As it became increasingly clear that the Government were not willing to sign the joint forest management agreements, TFCG has focused more on supporting community advocacy around JFM and equitable benefit sharing. Despite the obstacles to formalizing joint management TFCG has been supporting on-the-ground joint management by supporting joint patrols involving village natural resources committees and Government staff. Since 2011, through the Forest Justice in Tanzania project and more recently, through the Mama Misitu project, TFCG has continued to advocate for better reserve

management; and greater cooperation between the Government and the surrounding communities. The Government has responded to these calls for better management by removing the charcoaling camps that were expanding within the reserve by 2011; and by responding positively to initiatives aimed at greater cooperation with the surrounding communities to tackle threats including charcoal production and fire.

In the December 2011 issue of the *Arc Journal*, TFCG reported on findings of a deforestation analysis for Ruvu South, Kazimzumbwi, and Pugu Forest Reserves covering the period 2008-2010 (Morgan-Brown, MJUMITA, 2012). The results of the analysis showed alarming deforestation rates in all of these Greenbelt Forests concentrated in the most biologically unique forest areas and threatening to permanently alter the reserves' vegetation. Upon comparing what has happened in recent years to forest cover in Pande Game Reserve, a 1226ha reserve 25km north-west of Dar es Salaam city centre, TFCG found relatively less deforestation in Pande than in the more distant Ruvu South FR.

To get a better understanding of the nature of deforestation in Ruvu South Forest Reserve and the Pande Game Reserve, a cloud free Landsat image from June 29, 2000 was classified. This enabled differentiation between forests made up of predominately large trees and other closed canopy scrub forests (Fig. 1). The classification was done using Randomforest classification implemented in R with training regions selected from high resolution imagery in Google Earth. IR-MAD change detection and a decision tree were then used to compare the Landsat June 29, 2000 image to a Landsat July 7, 2011 image and detect deforestation and severe degradation (Fig. 1).


The results of the analysis show that in 2000, the Ruvu South Forest Reserve had 2,555ha of high forest and 11,870ha of thicket forest. Between 2000 and 2011, 950ha of high forest and 1,640ha of thicket forest were deforested or severely degraded. The map also shows that the largest patch of contiguous high forest was almost completely lost. Half of the forest clearance occurred in the two-year span 2008-2010, suggesting that deforestation rates rapidly accelerated after 2008. In summary, from 2000 to 2011, nearly 40% of Ruvu South's high forest was lost, with 20% lost between the years of 2008 and 2010.

If the rates of clearance observed in 2008-2010 persist, all of Ruvu South's high forest will be cleared or severely degraded by 2018. This is especially bad news for some of Tanzania's unique species that are found in Ruvu South, such as the Critically Endangered Rondo galago *Galagoides rondoensis*, which depend on the increasingly rare high coastal forest.

The pattern of deforestation in Ruvu South shows that deforestation can rapidly increase. It appears that the Sun Biofuel development to the south of the reserve that started in 2008 may have improved access for charcoal makers; and pulled in people in search of employment. This resulted in the clearance of the largest patch of high forest in the reserve and the collapse of the Black and white colobus population. Since then, charcoal makers have pushed into the heart of the reserve in search of the few remaining patches of high forest and created their own network of dirt roads visible in Google Earth.

Proximity and accessibility to Dar es Salaam are not the only factors driving deforestation in protected forests. In contrast with what TFCG has observed in Ruvu South, Kazimzumbwi, and Pugu Forest Reserves, the Pande Game Reserve have not suffered such large scale deforestation and degradation between 2008 and 2010 even though it is even closer to Dar es Salaam. Management appears to be the main determining factor of the fate of protected forests near Dar es Salaam, and the loss of forest in Ruvu, Kazimzumbwi and Pugu suggests serious failure in the management of these three Forest Reserves by the former Forestry and Beekeeping Division.

Figure 4a-b. Ruvu South forest cover in 2000 (a) and 2011 (b). Dark green = High forest. Light green = Thicket forest. Very light green = Wooded grassland. b. Deforestation in Ruvu South Forest Reserve between 2001 and 2011. Red = Deforestation 2001 – 2011. Dark green = High forest. Light green = Thicket forest. Very light green = Wooded grassland.

2) Forest Reserve Description

2.1 General description

Name: Ruvu South Forest Reserve

Size: 35,000ha of

Location: 6°53'S - 7°03'S, 38°46'E - 39°02'E Kibaha and Kisarawe districts, Coast Region

Ruvu South Forest Reserve lies 45km south-west of Dar es Salaam city, 20 km from Kibaha town; the north-eastern corner of Ruvu South comes within 1 km of the north-western end of Pugu and is only 2 km from the western edge of Kazimzumbwi (Birdlife, 2012).

Elevation: 120 - 260m a.s.l

Management: Designated as FR in 1967; a central government Forest Reserve

Status: Protective Forest Reserve

Variation Order 81 29/6/1979 incorporates the two former forest reserves into the new Ruvu South Forest Reserve; original Banda and Kola Forest Reserves were gazetted under notice no. 158 & 159 in 1958.

Major Threats: charcoal production and fire. The Tanzanian central line railway cuts through the reserves as does the Kazimzumbwi-Mzenga road.

Villages: 8 villages and one-subvillage surround the reserve including Kola, Kifuru, Kipangege, Kibwemwenda, Soga, Bokomnemela, Mpiji and Chakenge

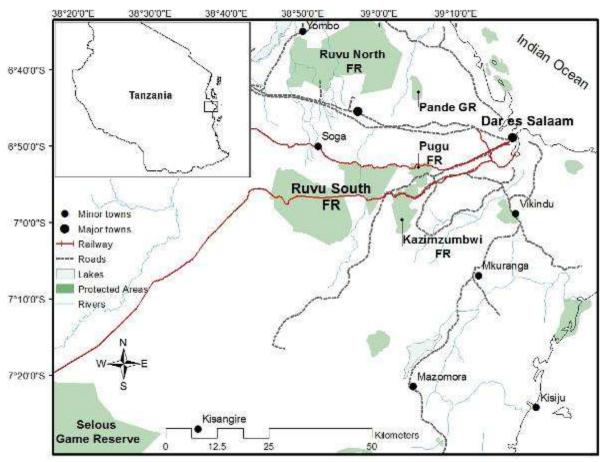


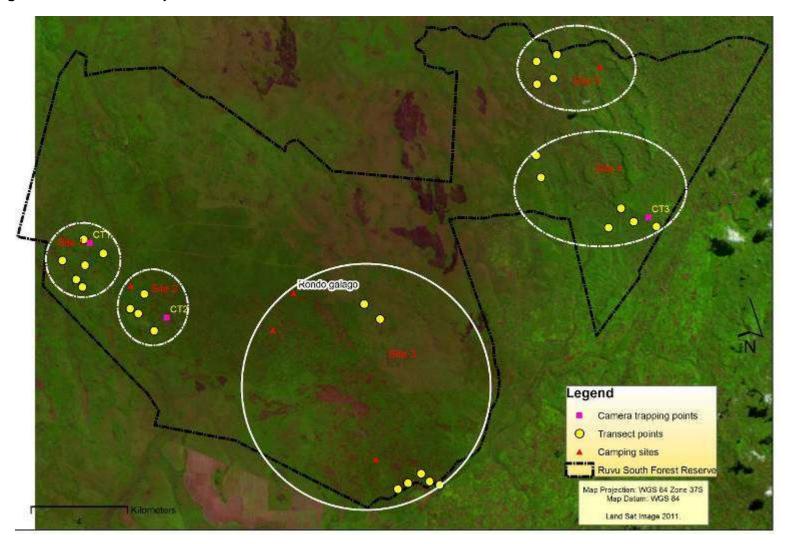
Figure 5. Map showing location of Ruvu South Forest Reserve in Coast Region.

2.2 Vegetation

Ruvu South Forest Reserve is characterized by extensive Zanzibar–Inhambane scrub-forest that may be natural climax vegetation (Birdlife, 2012). Nearly 10,000ha of the reserve is forest, much of it riparian forest, forest that is adjacent to water.

The forest supports several vegetation types including disturbed dry forest (e.g., *Hymanaea verrucosa* and *Baphia kirkii*), riverine forest (e.g., *Sorindeia madagascariensis*), thicket (e.g., *Dalbergia sp.*), woodland and scrub forest. Several swamps are also found in the centre of the reserve. There are large stands of riparian forest in Ruvu South, as well as areas of grass-covered flood-plain.

The site has two major railway systems passing through it (Fig. 2); the need to protect embankments and cuttings should help ensure some forest remains on the steeper slopes (Clarke & Dickinson, 1995).


2.3. Climate

Like other Dar es Salaam Greenbelt Forests, Ruvu is influenced by East African oceanic temperatures slightly modified by altitude. Approximately 967mm of rainfall fall per year according to data recorded at the nearby Alavi Sisal Estate rainfall station from 1931-1960; the least rain (<50mm) falls between June and October (Clarke & Dickinson, 1995). Ruvu South Forest Reserves lies in the rain shadow of the Pugu Hills, where higher annual rainfall (>1200mm) has been recorded at Kisarawe (Frontier, unpublished report).

3) Survey Sites

Surveys were conducted at five sites in Ruvu South Forest Reserve (Figure 6). These five sites were: 1. Mtamba/Kola (good forest), 2. Chakenge (being cleared), 3. Mtamba/Chakenge (being cleared), 4. Kifuru (recently deforested), and 5. Mpiji/Kazimzumbwi (good forest). Characteristics of these sites, labeled 1-5 respectively, are described in further detail in the following sections.

Figure 6. Location of study sites and disturbance transects.

4) Mammals

4.1 Background

Frontier Tanzania recorded 12 mammal species including 5 bat and 2 rodent species in 1995 including the East African collared fruit bat *Myonycteris relicta* (VU) and the lesser pouched rat *Beamys hindei* (VU). Other Red-Listed species recorded by Frontier include the black-and-rufous elephant shrew *Rhynchocyon petersi petersi* (Rare) and the Zanzibar galago *Galagoides zanzibaricus* (VU). In 2002, another Frontier survey recorded 36 species of mammals (Frontier, unpublished report). African elephants have not been seen in the reserve since c. 2002.

4.2 Objectives

To provide an updated check-list of mammals in Ruvu South Forest Reserve. Transects and nocturnal surveys were conducted with a focus on primates and forest antelopes; camera-trapping was aimed at other, less conspicuous mammals such as elephant-shrews and carnivores.

4.3 Methods

4.3.1 Transects

The survey was conducted along recce transects of not less than 2 km and not exceeding 3 km from camp in four different directions (South, West, North and East at each site).

Along daytime transects, we recorded animal sightings, sounds, tracks and other signs (including faeces, digging, tree and fruit eating). These surveys were aimed at detecting diurnal species through direct observation or identification of vocalizations of primates and antelopes. Sighting locations were marked with a hand-held GPS.

Table 1. Transects along which primates and forest antelopes were surveyed.

Site number & name	Lat/long	Transect length (km)	No. of transects	Dates	Vegetation type
Site 1- Mtamba/Kola	488986/9223787	2.5	3	Nov. 18-20, 2011	Disturbed forest/shrubs
Site 2- Chakenge	475915/9230895	2.5	3	Nov. 14-15, 2011	Disturbed coastal forest
Site 3- Mtamba/Chakenge	478941/9228936	2.5	4	Nov. 15-17, 2011	Shrubs/thicket
Site 4- Kifuru	497013/9233504	2.5	2	Nov. 21-22, 2011	Miombo woodland/thicket
Site 5- Mpiji/Kazimzumbwi	496174/9239360	2.5	2	Nov. 23-24, 2011	Shrubs (Highly disturbed)

4.3.2 Camera traps

Three camera traps were set, one in Kifuru and two in Chakenge in November-December 2011.

Table 2. Locations of camera trapping sites in Ruvu South FR.

CT site	Site Name	Camer a #	Number camera trap davs	Location (lat/long)	Altitude (m)s	Vegetation type
1	Kifuru (Site 4)	CT3	31	0499513/9233121	243	Woodland/scrub
2	Mtamba/Chakenge (Site 3)	CT2	30	0479599/9228683	239	Disturbed dry forest
3	Chakenge (Site 2)	CT1	32	0476331/9232062	155	Disturbed dry forest

5.3.3 Galago surveys

Galagos are mostly or exclusively nocturnal so survey techniques are conducted at night.

Nocturnal transect surveys

Night walks were conducted along pre-existing paths or cut transects to reduce noise and disturbance. Galagos were detected visually by their eyeshine using head torches. Morphological details were noted with the aid of a spotting torch and binoculars. Photographs were also taken where possible. Visual descriptions were compared with published and unpublished descriptions and photographs. During the nocturnal census walks, galago vocalizations were tape-recorded and used for species identification. An analogue Marantz PMD-222 audiocassette recorder and a Sennheiser K6-ME66 directional microphone were used.

Night walks started just before dusk and continued between 18:45 and 22:00, then in the mornings from 05:00 – sunrise. During the night, data was taken advantageously around camp. Walks were conducted slowly at 0.5 km / hr pausing to observe any galagos and other target species when animals were seen and to record vocalizations. Start and finish times were noted as well as time taken to record and / or observe animals. The times at which animals were detected and any behavioural observations were also recorded (Perkin 2006). Surveys were conducted between 23/11 – 26/11/2011 for one night close to the southern border at Campsite 3 Mtamba/Chakenge (being cleared) and for two nights at Campsite 4. Kifuru (recently deforested).

Vocalization analysis

Vocalizations were imported into a computer and digitized using Avisoft-Sonapro (R. Spect, Berlin) software to generate sonograms, and spectrograms that graphically illustrate sound patterns. These can then be used to identify calls, make qualitative comparisons and descriptions and quantitative measurements. Galagos are identified mainly from their species specific advertising call and to a lesser extent their alarm calls (due to their complexity and variety).

4.4 Results

Sightings, sounds and/or signs of 21 mammal species were recorded: 13 on transects – 7 on mammal transects (Table 3), and 6 along disturbance transects (Appendices) – 7 with CTs (Table 4) and two during opportunistic surveys during evening / night.

4.4.1 Transects

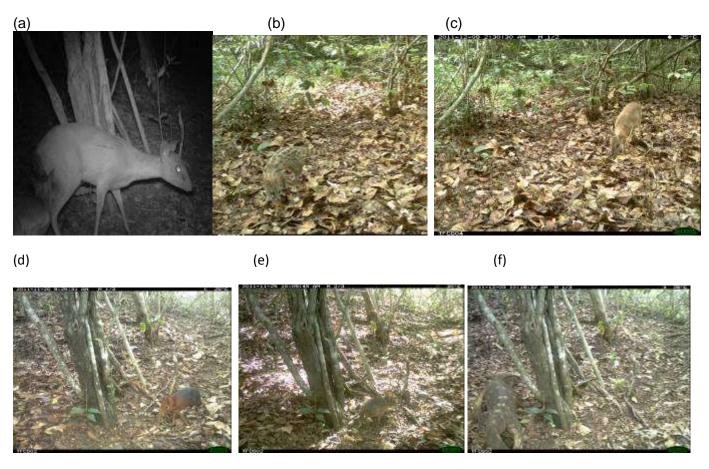
Seven mammals were recorded along transects.

Table 3. Mammals recorded on transects.

Family	Scientific name	Taxon		,	Site	Total		
- anniy		Tuxon	1 2 3 4		5	No. of encounters		
CERCOPITHECIDAE	Cercopithecus mitis	Sykes monkeys	0	2	0	0	0	2
CERCOPITHECIDAE	Papio cynocephalus	Yellow baboons	4	0	0	0	0	4
BOVIDAE	Tragelaphus scriptus	Bushbuck	6	3	2	0	2	13
BOVIDAE	Cephalophus natalensis	Red duiker	4	0	1	0	0	5
	Neotragus moschatus	Suni	4	0	5	2	4	15
MACROSCELIDIDAE	Petrodromus tetradactylus	Elephant shrew	4	8	0	0	0	12
SUIDAE	Warthog	2	0	0	0	0	2	

NB. Red = sighting, Green = hearing, Blue = old sign, orange = both fresh and old signs.

Signs of mammals were also seen on disturbance transects (see Appendices) including aardvark holes, and dung of hare, hyrax, hyena, bushpig and buffalo.


4.4.2 Camera traps

The three CTs captured 327 images of seven mammals, two birds, and one reptile. Of these 327 images, 84% (274 images) were of four-toed elephant shrews. Giant pouched rat (18 images) suni (13) and black-and-rufous elephant-shrews (12) were the most commonly captured mammals after the Four-toed elephant-shrew (Table 4).

Table 4. Species caught on camera trap in Ruvu South FR in November-December 2011. CT1 = Chakenge, CT2 = Kifuru and CT3 = Chakenge.

Family	Scientific name	Common name	Red List	CT1	CT2	СТЗ	Total images
BOVIDAE	Neotragus moschatus	Suni	LC	2	8	3	13
HERPESTIDAE	Bushy-tailed mongoose	LC			1	1	
MACROSCELIDIDAE	Four-toed elephant shrew	LC	43	65	166	274	
MACROSCELIDIDAE	Rhynchocyon petersi	Rufous & black elephant shrew	VU		9	3	12
NESOMYIDAE	Cricetomys sp.	Giant pouched	LC	2	4	12	18
VIVERRIDAE	Genetta tigrina	Blotched genet	LC		1	1	2
VIVERRIDAE	Civettictis civetta	Civet	LC		1		1
COLUMBIDAE	?	Dove			1		1
PHASIANIDAE	Francolinus sp.	Francolin sp.				1	1
VARANIDAE	Varanus niloticus	Nile monitor			1	1	2
?	?	Unknown				2	2

Figure 7. Camera trap photographs from Ruvu South FR.

(a) Infant suni trying to suckle from her mother.(b) Small spotted genet captured during day time.(c) Suni.(d) Rufous and black elephant-shrew.(e) Four-toed elephant shrew(f) Monitor lizard

5.4.3 Galago surveys

The surveys recorded three species of galago: Otolemur garnettii, Galagoides zanzibaricus and Galagoides rondoensis. O. garnettii and G. zanzibaricus were recorded in both Campsites 3 and 4

whereas *G. rondoensis* was only recorded in the disturbed evergreen forest close to campsite 3 near the southern border of the reserve.

4.5 Discussion

The high abundance of elephant-shrews suggested from CT trapping rates is consistent with unpublished results from Frontier (Frontier Tanzania, unpublished report) in which the number of elephant-shrew records in RSFR was over twice that recorded in Kazimzumbwi FR.

Other small forest mammals are still present in Ruvu, including suni and blotched genet. CTs did not capture other mammals whose signs were seen on transect, including hare, hyrax, hyena, aardvark, bushpig and buffalo. We recorded one species of conservation concern on camera traps – the Rufous and black elephant shrew (VU).

The Critically Endangered (CR) Rondo galago was recorded at Campsite 3 by Andrew Perkin on the basis of sightings and recording vocalizations. The Rondo galago *Galago rondoensis* (RG), discovered in 1997 is classified as a top 25 most endangered primate by IUCN/SSC Primate Specialist Group. The galago is only from seven forest patches of <100km² and is lacking conservation attention.

5) Birds

5.1 Background

Like other coastal forests, Ruvu South FR is rich in avifauna. It falls within the Kisarawe District Coastal Forests IBA together with Pugu and Kazimzumbwi Forest Reserves. This IBA supports species of global conservation concern such as the East Coast akalat and southern banded snake-eagle, and biomerestricted species such as the Uluguru violet-backed sunbird (BirdLife, 2012). The forest has been surveyed by Baker and Baker (2002), and was the site of early collections by ornithologist Fuggles-Couchman in 1955 (Clarke & Dickinson, 1995).

5.2 Objectives

To provide an updated check-list of birds in Ruvu South Forest Reserves with special focus on threatened and coastal endemic species.

5.3 Methods

Two methods were used to assess bird fauna in the five selected survey sites in Ruvu South Forest Reserve: mist netting and direct observations. These methods were adapted from Doggart, 2006.

5.3.1 Observations

Eleven days were spent opportunistically surveying birds in this area. At each site, the birder walked in different directions from camp to compile a list of birds species present in the forest. At each site, the birder moved in four different directions: West, East, North and South. Every bird species seen or heard was recorded, and bird vocalizations were taped with an acoustic recording device. For each site, bird observation survey effort was 9 hours per day for each of the eleven days of the survey for a total of 99 hours of observation.

5.3.2 Mist netting

After selection of good vegetation structure where there was possibility of sampling a high diversity of bird species, mist nets were set early in the morning (at first light) on each day of the survey, then checked frequently at 10-15 minute intervals throughout the day until sunset. Captured birds were removed from the net, identified and then immediately released. Based on their physical features, birds were identified to species level (Table 9).

Table 5. Bird survey sampling intensity (mist netting).

Survey sites	Mist netting hours	GPS location (lat/long)	Altitudinal range (m)	Dates
Site 1-Mtamba/Kola	1008	0485612/9229805	224	Nov. 17-18, 2011
Site 5-Mpiji/Kazimzumbwi	1008	0498419/9238777	205	Nov. 21-22, 2011

NB. Mist net hours = Total length of the net x numbers of hours the net was up in the field.

5.3.3 Sites

Sites surveyed were as follows: Site 1 = Mtamba/Kola (Good forest); Site 2 = Chakenge (Being deforested); Site 3 = Mtamba/Chakenge (Being deforested); Site 4 = Kazimzumbwi/Kifuru (Recently deforested) and Site 5 = Mpiji (Good forest) (Table 7)

5.4 Results

A total of 88 birds species in 67 genera and 39 families were recorded during the 99-hour survey at five sites in Ruvu South FR. Of these, two species are Red-Listed, the bateleur (NT) and East Coast akalat (NT) (Table 6). The latter was seen at only one site – Mtamba/Kola (good forest) – while the bateleur was observed at three of the five survey sites. Between 26 (in disturbed forest in Chakenge) and 63 (in good forest Mtamba/Kola) species were recorded at the five survey sites (Table 6).

Table 6. Checklist of 88 bird species recorded in five different sites of Ruvu South FR. H = Habitat with F = forest, O = open; R = Range with W = Widespread, NE = Near Endemic; RL = Red List status; 1 indicates presence and total = total number of sites at which species was seen.

Family	Scientific name	Common name	Author	Н	R	RL	1	2	3	4	5	Total
ACCIPITRIDAE	Accipiter minullus	Little sparrowhawk	Daudin, 1800		W	LC	1	0	0	0	0	1
ACCIPITRIDAE	CIPITRIDAE Gypohierax angolensis Palm-nut vulture C		Gmelin, 1788	F	W	LC	1	0	0	1	1	3
ACCIPITRIDAE	Terathopius ecaudatus	Bateleur	Daudin, 1800	0	W	NT	1	0	0	1	1	3
ALAUDIDAE	Mirafra Africana	Rufous-naped lark	Smith, 1836		W	LC	0	0	0	1	1	2
ALAUDIDAE	Mirafra rufocinnamomea	Flappet lark	Salvadori, 1865		W	LC	0	1	1	1	1	4
ALCEDINIDAE	Halcyon leucocephala	Grey-headed kingfisher	Muller, 1776		W	LC	1	0	0	0	0	1
ALCEDINIDAE	Halcyon senegalensis	Woodland kingfisher	Linnaeus, 1766		W	LC	0	0	0	1	1	2
BUCEROTIDAE	Bycanistes bucinator	Trumpeter hornbill	Temminck, 1824	F	W	LC	0	0	0	1	1	2
BUCEROTIDAE	Tockus alboterminatus	Crowned hornbill	Buttikofer, 1889	F	W	LC	1	0	0	1	1	3
BUCEROTIDAE	Tockus nasutus	African grey hornbill	Linnaeus, 1766	0	W	LC	1	0	0	1	1	3
BUCEROTIDAE	Tockus pallidirostris	Pale-billed hornbill	Hartlaub&Finsch, 1870		W	LC	0	1	1	0	0	2
CAPITONIDAE	Pogoniulus bilineatus	Yellow-rumped tinkerbird	Sundevall, 1850	F	W	LC	1	1	1	1	1	5
CAPRIMULGIDAE	Caprimulgus pectoralis	Fiery-necked nightjar	Cuvier, 1816	0	W	LC	0	0	0	1	1	2
CISTICOLIDAE	CISTICOLIDAE Camaroptera brachyura Grey-ba		Vieillot, 1820	F	W	LC	1	0	0	0	0	1
CISTICOLIDAE	Camaroptera undosa	Miombo wren-warbler	Reichenow, 1882		W	LC	0	1	1	0	0	2
CISTICOLIDAE	Cisticola cantans	Singing cisticola	Heuglin, 1869		W	LC	1	0	0	0	0	1
CISTICOLIDAE	Cisticola chiniana	Rattling cisticola	Smith, 1843	0	W	LC	0	1	1	0	0	2
CISTICOLIDAE	Prinia subflava	Tawny-flanked prinia	Gmelin, 1789	0	W	LC	1	1	1	1	1	5
COLIIDAE	Colius striatus	Speckled mousebird	Gmelin, 1789	0	W	LC	1	0	0	0	0	1
COLUMBIDAE	Streptopelia decipiens	African mourning dove	Hartlaub&Finsch, 1870		W	LC	0	1	1	0	0	2
COLUMBIDAE	Streptopelia semitorquata	Red eyed dove	Ruppell, 1837			LC	1	0	0	1	1	3
COLUMBIDAE	Treron calvus	African green-pigeon	Temminck, 1808		W	LC	1	1	1	0	0	3
COLUMBIDAE	Turtur tympanistria	Tambourine dove	Temminck, 1809	F	W	LC	0	0	0	1	1	2
COLUMBIDAE	Turtur chalcospilos	Emerald spotted wood dove	Wagler, 1827		W	LC	1	0	0	1	1	3
CORACIIDAE	Eurystomus glaucurus	Broad-billed roller	Muller, 1776	0	W	LC	1	1	1	0	0	3
CUCULIDAE	Centropus superciliosus	White-browed coucal	Hemprich & Ehrenberg, 1833	0	W	LC	1	0	0	1	1	3
CUCULIDAE	Chrysococcyx caprius	Didric cuckoo	Boddaert, 1783		W	LC	1	0	0	1	1	3
CUCULIDAE	Cuculus poliocephalus	Lesser cuckoo	Latham, 1790		W	LC	1	0	0	0	0	1
CUCULIDAE	Cuculus rochii	Madagascar lesser cuckoo	Hartlaub, 1863		W	LC	0	1	1	0	0	2
DICRURIDAE	Dicrurus adsimilis	Fork-tailed drongo	Bechstein, 1794	0	W	LC	0	0	1	1	0	2
DICRURIDAE	Dicrurus ludwigii	Square-tailed drongo	Smith, 1834	F	W	LC	1	0	0	0	0	1

Family	Scientific name	Common name	Author	Н	R	RL	1	2	3	4	5	Total
ESTRILDIDAE	Lonchura cucullata	Bronze mannikin	Swainson, 1837	0	W	LC	1	0	0	0	0	1
ESTRILDIDAE			Linnaeus, 1758		W	LC	1	1	1	0	0	3
HIRUNDINIDAE Hirundo smithii Wi		Wire-tailed swallow	Leach, 1818		W	LC	1	0	0	1	1	3
INDICATORIDAE	Indicator variegatus	Scaly-throated honey guide	Lesson, 1830	0	W	LC	0	0	0	1	1	2
LANIIDAE	Lanius collurio	Red-backed shrike	Linnaeus, 1758		W	LC	0	0	0	1	1	2
MALACONOTIDAE	Tchagra australis	Brown-crowned tchagra	Smith, 1836		W	LC	1	0	1	1	1	4
MALACONOTIDAE	Telophorus nigrifrons	Black-fronted bush-shrike	Reichenow, 1896		W	LC	1	0	0	0	0	1
MALACONOTIDAE	T. sulfureopectus	Sulphur-breasted bush shrike	Lesson, 1831		W	LC	0	0	0	1	1	2
MEROPIDAE	Merops hirundineus	Swallow-tailed bee-eater	Lichtenstein, 1793		W	LC	1	1	1	1	1	5
MEROPIDAE	Merops pusillus	Little bee-eater	Muller, 1776	0	W	LC	1	0	0	1	1	3
MONARCHIDAE	Trochocercus cyanomelas	Blue-mantled flycatcher	Vieillot, 1818	F	W	LC	0	0	0	1	1	2
MUSCICAPIDAE	Muscicapa adusta	African dusky flycatcher	Boie, 1828	0	W	LC	0	0	0	1	1	2
MUSCICAPIDAE	Muscicapa striata	Spotted flycatcher	Pallas, 1764	0	W	LC	1	1	1	0	0	3
MUSOPHAGIDAE	MUSOPHAGIDAE Tauraco livingstonii		Gray, GR, 1864	F	W	LC	1	1	1	0	0	3
MUSOPHAGIDAE	Tauraco porphyreolophus	Purple-crested tauraco	Vigors, 1831	F	W	LC	1	0	0	0	0	1
NECTARINIDAE	Dryoscopus cubla	Black backed puffback	Shaw, 1809	F	W	LC	1	0	0	1	1	3
NECTARINIDAE	Nectarinia bifasciata	Purple banded sunbird	Shaw, 1812		W	LC	0	0	0	1	1	2
NECTARINIDAE	Anthreptes collaris	Collared sunbird	Vieillot, 1819	F	W	LC	1	0	0	0	0	1
NECTARINIIDAE	Anthreptes neglectus	Uluguru violet-backed sunbird	Neumann, 1922	FF	W	LC	1	0	0	1	1	3
NECTARINIDAE	Laniarius aethiopicus	Tropical boubou	Gmelin, 1788	0	W	LC	1	0	0	1	1	3
NECTARINIDAE	Nectarinia moreaui	Amethyst sunbird	Shaw, 1812	0	W	LC	1	0	0	0	0	1
NECTARINIDAE	Nectarinia olivacea	Olive sunbird	Smith, A, 1840	F	W	LC	1	0	0	1	1	3
NECTARINIDAE	Nectarinia veroxii	Mouse-coloured sunbird	Smith, 1831			LC	1	0	0	0	0	1
NUMIDIDAE	Guttera pucherani	Crested guineafowl	Hartlaub, 1860	FF	W	LC	1	0	0	1	1	3
NUMIDIDAE	Numida meleagris	Helmeted guineafowl	Linnaeus, 1758		W	LC	1	1	1	1	1	5
ORIOLIDAE	Oriolus auratus	African golden oriole	Vieillot, 1817		W	LC	1	1	1	0	0	3
ORIOLIDAE	Oriolus larvatus	African black-headed oriole	Litchtenstein, 1823	F	W	LC	1	0	0	0	0	1
OTIDIDAE	Eupodotis melanogaster	Black-bellied bustard	Ruppell, 1835		W	LC	0	0	0	1	1	2
PHASIANIDAE	Francolinus sephaena	Crested francolin	Smith, 1836		W	LC	0	1	1	1	1	4
PHOENICULIDAE	Phoeniculus purpureus	Green wood hoopoe	Miller, 1784	0	W	LC	0	1	1	1	1	4
PHOENICULIDAE	Rhinopomastus cyanomelas	Common scimitarbill	Vieillot, 1819		W	LC	1	1	1	0	0	3
PICIDAE	Dendropicos fuscescens	Cardinal woodpecker	Vieillot, 1818	0	W	LC	1	0	0	0	0	1
PLATYSTEIRIDAE	Batis soror	Pale batis	Reichenow, 1903	0	W	LC	0	0	0	1	1	2

Family	Scientific name	Common name	Author	Н	R	RL	1	2	3	4	5	Total
PLATYSTEIRIDAE	Bias musicus	Black & white shrike flycatcher	Vieillot, 1818		W	LC	0	1	1	0	0	2
PLATYSTEIRIDAE	Platysteira peltata	Black throated wattle-eye	Sundevall, 1850		W	LC	0	0	0	1	1	2
PLOCEIDAE	Ploceus bicolor	Dark-backed weaver	Vieillot, 1819		W	LC	1	0	0	0	0	1
PRIONOPIDAE	Prionops retzii	Retz's helmetshrike	Wahlberg, 1856	0	W	LC	0	1	1	0	0	2
PSITTACIDAE	Poicephalus cryptoxanthus	Brown parrot	Peters, 1854	0	W	LC	1	0	0	1	1	3
PYCNONOTIDAE	Andropadus importunus	Zanzibar sombre greenbul	Vieillot, 1818		W	LC	1	0	0	1	1	3
PYCNONOTIDAE	Cercotrichas leucophrys	White-browed scrub-robin	Vieillot, 1817	0	W	-	1	0	0	0	0	1
PYCNONOTIDAE	Chlorocichla flaviventris	Yellow-bellied greenbul	Smith, 1834		W	LC	1	1	1	0	0	3
PYCNONOTIDAE	Cossypha heuglini	White-browed robin-chat	Hartlaub, 1866	0	W	LC	0	0	0	1	1	2
PYCNONOTIDAE	Cossypha natalensis	Red-capped robin-chat	Smith, 1840	F	W	LC	1	0	0	1	1	3
PYCNONOTIDAE	Pycnonotus barbatus	Common bulbul	Desfontaine, 1789	0	W	LC	1	1	1	1	1	5
PYCNONOTIDAE	Sheppardia gunningi	East coast akalat	Haagner, 1909	F	NE	NT	1	0	0	0	0	1
PYCNONOTIDAE	Phyllastrephus debilis	Tiny greenbul	Sclater, 1899	FF	W	LC	1	0	0	1	1	3
PYCNONOTIDAE	Turdus libonyanus	Kurrichane thrush	Smith, 1836	0	W	LC	1	1	1	0	0	3
RAMPHASTIDAE	Lybius torquatus	Black-collared barbet	Dumont, 1816		W	LC	1	0	0	1	1	3
STRIGIDAE	Glaucidium perlatum	Pearl-spotted owlet	Vieillot, 1818		W	LC	1	0	0	0	0	1
STRIGIDAE	Strix woodfordii	African wood owl	Smith, 1834	F	W	LC	0	0	0	1	1	2
SYLVIIDAE	Apalis melanocephala	Black-headed apalis	Fischer & Reichenow, 1884	FF	W	LC	1	0	0	0	0	1
SYLVIIDAE	Melocichla mentalis	African moustached warbler	Fraser, 1843		W	LC	1	0	0	1	1	3
SYLVIIDAE	Phylloscopus trochilus	Willow warbler	Linnaeus, 1758		W	LC	1	0	0	0	0	1
SYLVIIDAE	Apalis flavida	Yellow-breasted apalis	Strickland, 1852	F	W	LC	1	1	1	1	1	5
TROGONIDAE	Apaloderma narina	Narina trogon	Stephens, 1815	F	W	LC	1	1	1	1	1	5
TURDIDAE	Neocossyphus rufus	Red-tailed ant-thrush	Fischer & Reichenow, 1884	FF	W	LC	1	0	0	1	1	3
TURNICIDAE	Turnix sylvaticus	Common button quail	Desfontaines, 1787		W	LC	1	0	0	1	1	3
Species richness							63	26	28	52	51	220

5.5 Discussion

Ruvu Forest still supports a diversity of forest birds. We recorded in 88 bird species of which two are of conservation concern, the bateleur (NT) and East Coast akalat (NT). The East Coast akalat is a locally common resident in the District Coastal Forest IBA, and Ruvu South may hold the largest population of this species within Tanzania (Birdlife, 2012).

We unfortunately did not observe other resident, coastal forest endemics such as the little yellow flycatcher, southern banded snake-eagle, and sokoke pipit, previously recorded and detailed in Clarke & Dickinson (1995) and listed by Birdlife (2012). We did record the red-capped robin chat, which, according to Birdlife, is a low-density resident within this IBA (*ibid*.).

One of our camera trap photos shows what we believe to be a francolin; however, Baker and Baker (1994) note the presence of a quail species from Ruvu South and this may be worth investigating further.

6) Forest Disturbance

6.1 Background

According to a forest cover change analysis carried out by TFCG, Ruvu South Forest Reserve in Coast Region is more disturbed than Pande Game Reserve, despite the former reserve being closer to Dar es Salaam. Here, we report results of surveys of human impact in the reserve, including pole and timber cutting and other forms of disturbance.

6.2 Objectives

The disturbance surveys were carried out to achieve the following aims:

- 1. To assess the level of disturbance in Ruvu South Forest Reserves by documenting all observations of disturbance and their intensities.
- 2. To gain a general understanding of the level of threats to Ruvu forest and its fauna and flora.
- 3. To devise site-specific priorities for conservation and management.

6.3 Methods

Thirteen disturbance transects were carried out at the five survey sites: two at Sites 2 and 5, and three at Sites 1, 3 and 4 (Tables 7-9). Methods were adapted from the TFCG survey manual (Doggart, 2006). A rope of 50m long was used to measure 50m sections along each 1km transect. The level of disturbance was assessed by the number of incidences of pole cutting, timber cutting, traps and other disturbances in a 10m strip (5m on either side of the transect line) along each transect line. The disturbance transect was sub-divided into 50m sections and data were recorded separately for each section. The longitude, latitude and altitude of the start and end points of each disturbance transect were marked with a GPS and transect bearing was recorded and followed using a compass.

For the purposes of this survey, poles are defined as all trees with a diameter at breast height (DBH) of 5cm-15 cm. Timber trees are defined as all trees exceeding 15 cm DBH (see Appendices). All other forms of anthropogenic disturbance within 5 m of either side of each transect were also recorded for every 50-m section. Other forms of disturbance were defined as follows:

- 1. Fire damage: area affected by fire, evinced by burnt trees and ground vegetation.
- 2. Charcoal: area where charcoal was burnt in the forest, evidence included small patches of burnt ground with charcoal remains.
- 3. Pitsaw: area cleared for pitsaw activities, with pitsaw platform, or remains of such.
- 4. Timber/planks/poles: cut timber, planks or cut poles laying on the ground ready for transport.
- 5. Trapping: animal traps of all varieties whether set or sprung.
- 6. Cultivation: evidence of crop cultivation (past or present).
- 7. Grazing: direct evidence or remains of cattle or goat grazing.
- 8. Footpath: including all human used paths.
- 9. Clearing: well-established clearings within the forest as a consequence of human disturbance (usually short grassland, potentially previous settlement).

Table 7. Total number of disturbance transects carried out in RSFR.

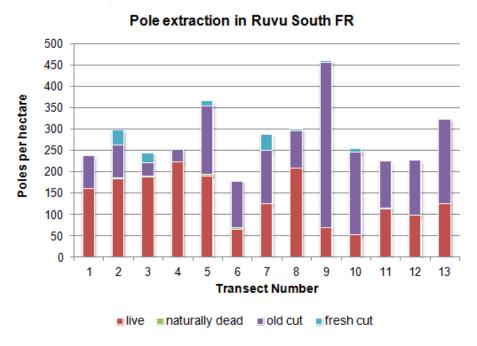
S/	Site Name	No. of	Dates	General Comments					
N		transects							
1	Site1-Mtamba/Kola	2	Nov.17-18, 2011	High disturbance esp. fire & charcoal making					
2	Site2-Chakenge	3	Nov.14-15, 2011 Medium disturbance mainly charcoal making with some fincidence						
3	Site3-Mtamba/Chakenge	3	Nov.15-16, 2011	High rates of timber & charcoal making					
4	Site4-Kifuru/Kazimzumbwi	3	Nov.19-20, 2011	High fire incidence and charcoal making					
5	Site5- Mpiji	2	Nov. 21-22, 2011	High fire incidence and charcoal making					
Tota	nl no. of transects	13	Nov. 14-22, 2011						

Table 8. Details of disturbance transects including the length of each transect, its start and end points, orientation and habitat types.

Transect	Transect		End point	Survey		
number	length	Start point (UTM)	(UTM)	date	Orientation	Habitat type
T₁R	1000(1)	475195/9231331	475775/9230541	14/11/2011	W	DWF/T
T ₂ R	1000(1)	476027/9230230	476138/9231141	14/11/2011	W	DWF/T
T ₃ R	1000(1)	476895/9231629	476085/9232213	15/11/2011	NW	DWF/T
T₄R	1000(1)	478014/9229328	478594/9229954	15/11/2011	W	DWF/T
T₅R	1000(1)	478347/9229130	479001/9228415	16/11/2011	SE	DWF/T
T ₆ R	1000(1)	490852/9222011	490084/9222486	17/11/2011	SE	DF/T
T ₇ R	1000(1)	489537/9222089	490436/9222159	17/11/2011	SE	DF/T
T ₈ R	1000(1)	487710/9229518	488383/9228905	18/11/2011	NE	DF/T
T ₉ R	1000(1)	499848/9232741	498897/9232949	19/11/2011	W	DF/T
T ₁₀ R	1000(1)	498369/9233504	497857/9232701	20/11/2011	SE	DF/T
T ₁₁ R	1000(1)	494854/9235700	495049/9234788	21/11/2011	SW	DF/T
T ₁₂ R	1000(1)	495711/9239885	495570/9238900	22/11/2011	SW	DF/T
T ₁₃ R	1000(1)	494892/92386559	494874/9239600	21/11/2011	NE	DF/T

6.4 Results

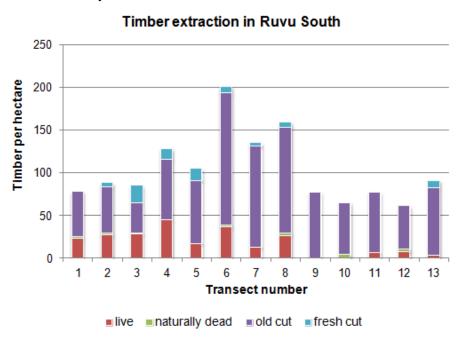
A total of 5521 disturbance events were recorded along the 13 transects at five sites with an overall disturbance rate of 425 events per hectare. Across the five sites, Mtamba/Kola (good forest) was most disturbed overall with 1427 disturbance events in total (764 poles, 495 timber and 168 other disturbances) and 476 events per hectare (Table 13).


Table 9. Summary of results from disturbance surveys.

Site Number	Site Name	Category	Transect	No. Poles	No. Timbers	No. Other disturbances	Total number	Total per ha
1	Mtamba/Kola	Good forest	6	178	201	69		
1	Mtamba/Kola	Good forest	7	287	135	55		
1	Mtamba/Kola	Good forest	8	299	159	44		
Subtotal -	- Site 1			764	495	168	1427	475.67
2	Chakenge	Being deforested	1	238	78	40		
2			2	298	88	25		446 00
2	Chakenge	Being deforested	3	244	85	19		
Subtotal -	Subtotal - Site 2			780	251	84	1115	371.67
3	Mtamba/Chakenge	Being deforested	4	253	128	12		
3	Mtamba/Chakenge	Being deforested	5	365	105	29		475.67
Subtotal -	- Site 3			618	233	41	892	446.00
4	Kifuru/Kazimzumbwi	Recently deforested	9	459	77	54		
4	Kifuru/Kazimzumbwi	Recently deforested	10	254	65	34		432.00
4	Kifuru/Kazimzumbwi	Recently deforested	11	224	77	52		102.00
Subtotal -	- Site 4			937	219	140	1296	432.00
5	Мріјі	Good forest	12	226	61	51		395.50
5	Mpiji	Good forest	13	323	91	39		424.69
Subtotal -	- Site 5			549	152	90	791	395.50
Total - Al	l Sites			3648	1350	523	5521	424.69

6.4.1 Pole extraction

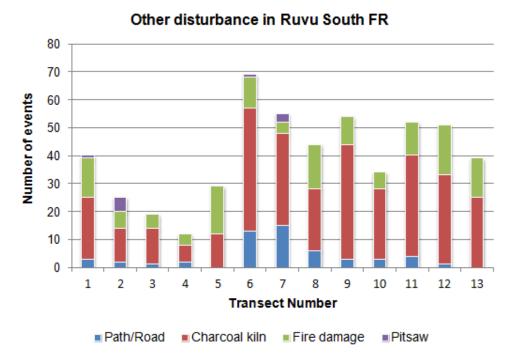
A total of 3648 poles were recorded. Of these, 49% (n = 1793) were live, 46% (n = 1712) were old cut, 3.5% (n = 127) were fresh cut, and 0.5% (n = 16) were naturally dead. Transect 9 had the most old cut poles, and transects 2 and 7 had the most fresh cut poles (Figure 8).


Figure 8. Number of live, naturally dead, old cut and fresh cut poles recorded in RSFR.

6.4.2 Timber extraction

A total of 1350 timber was recorded. Of this timber, 76% was old cut (n = 1022), 17% (n = 231) was live, 6% (n = 79) was fresh cut and the remaining 1% (n = 18) was naturally dead.

Figure 9. Number of live, naturally dead, old cut and fresh cut timber recorded in RSFR.



6.4.3 Other disturbance

In total, 523 other disturbance events were recorded on the 13 disturbance transects. Of these, 62% (n = 323) were charcoal kilns, 26% (n = 137) was fire damage, 10% (n = 52) were paths or roads and 2% (n = 323) were charcoal kilns, 26% (n = 323) was fire damage, 10% (n = 52) were paths or roads and 2% (n = 323) was fire damage, 10% (n = 52) were paths or roads and 2% (n = 323) was fire damage, 10% (n = 52) were paths or roads and 2% (n = 323) was fire damage, 10% (n = 52) were paths or roads and 2% (n = 323) was fire damage, 10% (n = 52) were paths or roads and 2% (n = 323) was fire damage, 10% (n = 52) were paths or roads and 2% (n = 323) was fire damage, 10% (n = 52) were paths or roads and 2% (n = 323) was fire damage, 10% (n = 52) where paths or roads and 2% (n = 323) was fire damage, 10% (n = 52) where paths or roads and 2% (n = 323) was fire damage, 10% (n = 52) where paths or roads and 2% (n = 323) where n = 323 (n = 323) where n =

10) were pitsaw. Transect 6 (Site 1, "good forest" near Kola) was the most disturbed of the 13 with 69 (>13%) of the 523 disturbance events (Figure 10). This suggests that the most intensive disturbance is concentrated into remaining patches of forest.

Figure 10. Other disturbances recorded in RSFR.

6.5 Discussion

All five sites were similarly disturbed with 372-476 disturbance events/hectare. The most intensive anthropogenic pressure is on remaining good forest, at Mtamba/Kola and Mpiji sites (transects 6-8 and 12-13 respectively). It appears that timber cutting is slightly more prevalent than pole cutting.

Charcoal kilns were the most frequent other disturbance type observed. Charcoal burning may be associated with high fire incidence in some areas of the reserve, and fire damage was the second most common disturbance type observed. Human footpaths, third most common disturbance type, traverse the reserve, facilitating access. Ten pitsaw sites were recorded.

The extent and rate of disturbance is high overall; however, no people were caught by camera traps in the 90+ camera trapping days of the CT survey.

7) Conclusions and Recommendations

Ruvu South FR still supports a wide diversity of mammals, and birds including 5 species of IUCN conservation concern species (53 Red-Listed bird species, and two Red-Listed mammal species). The heavy pressure on remaining good forest will inevitably threaten these and other, still common taxa.

Among the major ongoing threats, previously reported (CARE Tanzania, 2006), is population pressure from people living around RSFR, uncontrolled issuing of licenses for charcoal production and timber harvesting, and failure of TFS and Kisarawe District Council to enforce forest laws.

The following recommendations apply to Ruvu South FR and the other two forest reserves, Pugu and Kazimzumbwi, of the Kisarawe District:

- Forest laws should be enforced with consistent follow-up to ensure that cases that reach court are followed through on;
- Law enforcement plans should involve TFS, local government and the surrounding communities;
- Fire fighting and fire prevention plans should be prepared and implemented including provision of training and fire fighting equipment to Village Natural Resources Committee;
- JFM agreements should be signed and plans and by-laws should implemented;
- Tourism should be developed in the reserve;
- Community development schemes should be supported for the surrounding communities;
- Equitable benefit sharing through JFM with the surrounding communities should be established and implemented.

8) References

- Baker, N.E. & Baker, E.M. (2002). *Important Bird Areas in Tanzania: A first inventory.* Wildlife Conservation Society of Tanzania. DSM, Tanzania.
- BirdLife International (2012) Important Bird Areas factsheet: Kisarawe District Coastal Forests. Downloaded from http://www.birdlife.org on 07/12/2012
- CARE Tanzania (2006). Msitu Yetu Project: Final evaluation report. Prepared by Kaale, B.K. and Mwakifwamba, S. January 2006. In partnership with TFCG and WCST.
- Clarke, G.P. & Dickinson, A. (1995). Status reports for 11 coastal forests in Coast Region, Tanzania. Frontier Tanzania Technical Report No. 17. The Society for Environmental Exploration, London, UK & The University of DSM, Tanzania.
- Doggart, N. (2006). Filling the knowledge gap: Methods manual. Tanzania Forest Conservation Group/ Museo Tridentino di Scienze Naturali, Dar es salaam, Tanzania.
- Frontier Tanzania (unpublished report). Ruvu South Forest Reserve. Frontier-Tanzania Forest Research Programme.
- IPP Media (2012). Three tree species on verge of extinction. 20 April 2012, http://www.ippmedia.com/frontend/index.php?l=40722
- IUCN (2012). IUCN Red List of Threatened Species. Version 2012.1. www.iucnredlist.org. Downloaded on 7 December 2012.
- Lovett, J. & Clarke, G.P. (1998). *Leptactina papyrophloea*. In: IUCN 2012. IUCN Red List of Threatened Species. Version 2012.2. www.iucnredlist.org. Downloaded on 14 January 2013.
- MOBOT (2012). List of Targeted Plant Taxa in the EACF. www.mobot.org/MOBOT/Research/tanzania/cepf3.shtml
- Morgan-Brown T. (2012) The Tale of Two Forests. MJUMITA.
- Msuya, T. S., M. A. Mdnolwa, A. Kindo, and E. Shilogile. (2004). Role of Joint Forest Management in Poverty Alleviation and Sustainable Livelihoods Four Years Experience A Case Study of Ruvu Fuelwood Pilot Project. Gender and Forestry: Challenges to Sustainable Livelihoods and Forestry Management, Second World Wide Symposium on Gender and Forestry. UN Forum on Forests. Kilimanjaro, Tanzania.1-10 August, 2004.
- Ngana J., Mahay F., Cross K. (2010) Ruvu Basin: A situation analysis. IUCN Eastern and Southern Africa Programme. 96pp.
- Vorontsova, M.S. & Mbago, F.M. (2010). New *Solanum* species from Tanzanian coastal forests may already be extinct. *Journal of East African Natural History* 99(2): 227-234.

Appendices

Appendix I: Disturbance Transect 1 Site 2: Chakenge (Being deforested)

Names of recorders: Justine Gwegime & Yahaya Mponda

Date of survey: 14/11/2011 **District:** Kisarawe

Nearest sub-village: Mtamba Village: Chakenge

Village Forest Reserve: Ruvu South FR **Transect Number: 1**

Dominant vegetation: Being deforested Bearing: West **Start Point:** Lat 9231331, Long 475195 Altitude: 158m **End Point:** Lat 9230541, Long 475775 Altitude: 154m

Key to disturbance categories

,	to diotal balloo o	utogo.	100				
Р	Pitsaw	S	Settlement	T	Timber, planks, poles	R	Path or road
F	Fire damage	В	Bark or root harvesting	K	Charcoal kiln	G	Gunfire
С	Cultivation	M	Mining	N	Traps or snares	0	Other

	Qty of p	oles (5 – 15	cm)		Qty of t	imber (> 15	Other distur	Other disturbances		
Section (m)	Live	Naturally dead	(Cut	Live	Naturally dead	(Cut	Within transect	Outside transect
			old	fresh			old	fresh		
0-50	4	0	0	0	5	0	0	0	K(3)&F	
50-100	14	0	0	0	1	0	0	0	F	
100-150	12	0	0	0	0	0	1	0	F	
150-200	5	0	3	0	1	0	3	0	F&K(1)	
200-250	4	0	6	0	0	0	6	0	K(2)	
250-300	10	0	5	0	1	0	3	0	K(1)&F	
300-350	2	0	25	0	1	0	3	0	K(2)&F	
350-400	0	0	16	0	0	0	5	0	K(1)&F	
400-450	16	0	0	0	5	2	0	0		
450-500	5	0	3	0	0	0	7	0	K(2)	
500-550	10	0	0	0	2	0	5	0	K(1),R(1)&F	
550-600	1	0	6	0	0	0	8	0	F	
600-650	12	0	5	0	1	0	2	0	F	
650-700	5	0	0	0	0	0	0	0	F&R(1)	
700-750	13	0	0	0	4	0	3	0	F&P(1)	
750-800	10	0	0	0	0	0	0	0	K(1)&F	
800-850	11	0	0	0	1	0	0	0	R(1)&F	
850-900	11	0	1	0	1	0	2	0	K(5)	
900-950	10	0	6	0	0	0	2	0	K(1)	
950-1000	6	0	1	0	0	0	3	0	K(2)	
Total	161	0	77	0	23	2	53	0	K(22),R(3), P(1)&F(14)	
GLS Ger	ntle lower be	GMS	Sentle mid	d-slope	GUS	Gentle uppo	er	CL	Cliffs	•
	ep lower	SMS S	Steep mid	-slope	SUS	Steep uppe	r	VF	Valley floor	

	slope								slop	e			
1	to vegeta < 10 % asive alien	6 cov	ver		2	10	0 – 50 %	cove	er	3	> !	50 %	cover
		spe							1				T = .
LC	Lantana		CO	Cedrel	a	RU	Rubus	;	SJ	Stachytarpheta		0	Other
	camara			odorat	а		sp.			jamaicensis			(specify)
Hig	h conserva	atior	n values										
S	Stream	М	Ming'ol	ко Т	Threater	ned pl	lant	Е	C	pastal forest or E.	0	Oth	er e.g. edible
	or				species	•			Ar	c endemic species			shrooms
	spring												

Section (m)	Topography	Canopy cover	Shrub layer	Ground layer	Invasive alien species	High conservation values	Other observations
0-50	GLS	1	2	2			
50-100	GLS	1	2	2			
100-150	GLS	1	2	2			
150-200	GLS	1	2	2			
200-250	GLS	2	2	2			Millipedes
250-300	GLS	2	2	2			
300-350	GLS	2	2	2			
350-400	GLS	2	2	2			
400-450	GLS	2	2	2			
450-500	GLS	2	2	2			
500-550	GLS	2	2	2			
550-600	GLS	2	1	2			
600-650	GLS	3	1	2			
650-700	GLS	3	1	2			
700-750	GLS	3	2	2			
750-800	GLS	2	2	2			
800-850	GLS	3	2	2			
850-900	GLS	3	2	2			
900-950	GLS	2	2	2			
950-1000	GLS	2	2	2			

Appendix 2: Disturbance Transect 2

Names of recorders: Justine Gwegime & Yahaya Mponda	

Date of survey: 14/11/2011 District: Kisarawe

Village: Chakenge Nearest sub-village: Mtamba

Village Forest Reserve: Ruvu South FR Transect Number: 2

Dominant vegetation: BushBearing: EastStart Point: Lat 9230230, Long 476027Altitude: 167mEnd Point: Lat 9231141, Long 476138Altitude: 172m

Key to disturbance categories

Р	Pitsaw	S	Settlement	Т	Timber, planks, poles	R	Path or road
F	Fire damage	В	Bark or root harvesting	K	Charcoal kiln	G	Gunfire
С	Cultivation	M	Mining	N	Traps or snares	0	Other

	C	ty of poles	(5 – 15	cm)	Qty	of timber (>	Other disturbances			
Section (m)	Live	Naturally dead	(Cut	Live	Naturally dead	C	Cut	Within transect (qty)	Outside transect (qty)
			old	fresh			old	fresh		
0-50	3	0	5	0	1	0	7	0	K(2)&P(1)	
50-100	3	0	6	0	4	0	3	0	P(1)	
100-150	15	0	1	0	0	0	1	0		
150-200	5	0	1	7	0	0	4	1		
200-250	12	0	2	2	2	0	0	0	P(1)	
250-300	13	0	4	0	0	0	3	0	R(1)	
300-350	5	0	6	0	0	0	5	0	K(1)&F	
350-400	5	0	4	0	0	0	2	0	F	
400-450	5	2	2	0	0	0	6	0	K(1)	
450-500	5	0	0	10	2	0	0	1	F&K(1)	
500-550	2	0	10	8	0	0	2	3		
550-600	17	0	7	2	0	0	1	0	K(1)&R(1)	
600-650	10	0	4	0	0	0	4	0	F&K(2)	
650-700	11	0	7	4	1	0	2	0		
700-750	3	0	11	0	0	0	5	0	F	
750-800	15	0	0	0	3	1	0	0	K(1)&F	
800-850	12	0	1	0	5	0	3	0	K(3)	
850-900	15	0	0	0	3	1	0	0	P(1)	
900-950	12	0	1	0	5		3	0		
950-1000	15	0	4	4	1		3	0	P(1)	
Total	183	2	76	37	27	2	54	5	K(12),P(5), R(2)&F(6)	
slo	ep lower			mid-slope nid-slope	SUS	slope			Cliffs Valley floor	

Key	Key to vegetation cover													
1 < 10 % cover 2 10 - 50 % cover 3 > 50 % cover														
Inva	Invasive alien species													
LC	LC Lantana CO Cedrela RU Rubus SJ Stachytarpheta O Other													
	camara odorata sp. jamaicensis (specify)													
Higl	High conservation values													
S	Stream	М	Ming'oko) T	Threater	ned pl	ant	Е	C	oastal forest or E.	0	Othe	er e.g. edible	
	S Stream M Ming'oko T Threatened plant E Coastal forest or E. O Other e.g. edible or Arc endemic species mushrooms													
	spring													

Section (m)	Topography	Canopy cover	Shrub layer	Ground layer	Invasive alien species	High conservation values	Other observations
0-50	GUS	2	2	2			
50-100	GUS	2	2	2			Elephant shrew path and millipedes
100-150	GUS	2	2	2			Dikdik footprints/ Duiker pellets and Dikdik trail
150-200	GUS	2	2	2			Dikdik path
200-250	GUS	2	2	2			Elephant shrew path
250-300	GUS	2	2	2			Giant pouched rat trail
300-350	GUS	2	2	2			Dikdik path
350-400	GUS	2	1	2			
400-450	GUS	2	1	2			Elephant shrew trail
450-500	GUS	2	1	2			Dikdik trail
500-550	GUS	2	1	2			
550-600	GUS	2	2	2			
600-650	GUS	2	2	2			
650-700	GUS	2	2	2			Elephant shrew trail
700-750	GUS	2	2	2			Dikdik footprints & trail
750-800	GUS	2	2	2			
800-850	GUS	2	2	2			Elephant shrew trail
850-900	GUS	2	2	2			
900-950	GUS	2	2	2			Elephant shrew trail
950-1000	GUS	2	2	2			Dikdik footprints, millipedes

Notes: Perhaps this is good habitat for shrews and antelopes.

Appendix 3: Disturbance Transect 3

Names of recorders: Justine Gwegime & Yahaya Mponda

Date of survey: 15/11/2011 **District:** Kisarawe

Village: Chakenge Nearest sub-village: Mtamba

Village Forest Reserve: Ruvu South FRTransect Number: 3Dominant vegetation: BushBearing: NorthWest

 Start Point:
 Lat 9231629, Long 476895
 Altitude: 153m

 End Point:
 Lat 9232213, Long 476085
 Altitude: 154m

Key to disturbance categories

Р	Pitsaw	S	Settlement	Т	Timber, planks, poles	R	Path or road
F	Fire damage	В	Bark or root harvesting	K	Charcoal kiln	G	Gunfire
С	Cultivation	M	Mining	N	Traps or snares	0	Other

	Q	ty of poles	(5 – 15 cn	1)	Qty	of timber (>	15 cm	dbh)	Other disturbances		
section (m)	Live	Naturally dead	Cı	ut	Live	Naturally dead	C	Cut	Within transect (qty)	Outside transect (qty)	
			old	fresh			old	fresh			
0-50	15	0	0	0	0	0	0	0			
50-100	8	0	0	0	0	0	0	0			
100-150	13	0	0	0	0	0	0	0			
150-200	22	0	0	0	1	0	0	0			
200-250	7	0	0	0	3	0	0	0	F&K(1)		
250-300	15	0	2	0	1	0	4	0			
300-350	25	0	0	0	1	1	0	0			
350-400	10	0	0	0	1	0	0	1	F&K(1)		
400-450	5	1	2	6	2	0	0	6	K(1)		
450-500	10	0	0	3	1	0	3	5	F		
500-550	0	0	11	3	0	0	8	2	K(2)		
550-600	0	0	2	0	3	0	7	0	F&K(1)		
600-650	3	0	3	0	3	0	2	0	F		
650-700	11	0	5	0	3	0	0	0	K(1)		
700-750	9	0	4	0	1	0	3	0			
750-800	16	0	1	0	1	0	2	0			
800-850	4	0	2	0	5	0	2	0	K(1)		
850-900	3	0	0	0	2	0	1	1	K(2)		
900-950	4	0	0	8	0	0	4	1	K(3)		
950-1000	8	0	0	3	0	0	0	4	R(1)		
Total	188	1	32	23	28	1	36	20	K(13),R(1) & F(5)		

GLS	Gentle	lower
-----	--------	-------

GMS Gentle mid-slope

GUS Gentle upper

CL Cliffs

SLS	slope Steep lo slope	ower	SM	S Ste	ep mid-slo	ope	SU	S	slope Stee slope	p upper	VF	Valle	y floo	r
1	Key to vegetation cover 2 10 % cover 3 > 50 % cover Invasive alien species													
LC	Lantana		CO	Cedre	la	RU	Rubus	;	SJ	Stachytarpi	heta		0	Other
	camara			odora	ta		sp.			jamaicensis	3			(specify)
Higl	High conservation values													
S	Stream or	М	Ming'ol	ко Т	Threate species	ned pl	lant	Е		c endemic s		0		er e.g. edible shrooms

Section (m)	Topography	Canopy cover	Shrub layer	Ground layer	Invasive alien species	High conservation values	Other observations
0-50	GLS	2	1	1			
50-100	GLS	2	1	1			
100-150	GLS	2	1	1			Snail
150-200	GLS	2	1	1			Duiker footprints
200-250	GLS	2	1	1	LC		
250-300	GLS	2	2	1			Elephant shrew trails, giant pouched rat pit
300-350	GLS	2	2	1			Millipedes, elephant shrew trail
350-400	GLS	2	2	1			
400-450	GLS	2	2	1			Rodents trails
450-500	GUS	2	2	2			
500-550	LUS	2	2	2			Snail, dikdik footprints
550-600	GLS	2	2	2			
600-650	GLS	2	2	2			Dikdik footprints
650-700	GLS	2	2	2			
700-750	GLS	2	2	2			
750-800	GLS	2	2	2			
800-850	GLS	2	2	2			Millipedes
850-900	GLS	2	2	1			
900-950	GUS	2	2	1			Rodents pit, Millipedes
950-1000	GUS	2	2	1			

Notes: Good habitat for rodents and antelopes.

Appendix 4: Disturbance Transect 4

Site 3: Mtamba/Chakenge (Being deforested)

Names of recorders: Justine Gwegime & Yahaya Mponda

Date of survey: 15/11/2011 **District:** Kisarawe

Village: Chakenge/Mtamba Nearest sub-village: Chakenge/Mtamba

Village Forest Reserve: Ruvu South FR Transect Number: 4

Dominant vegetation: Bush; being deforestedBearing: WestStart Point: Lat 9229328, Long 478014Altitude: 173mEnd Point: Lat 9229954, Long 478594Altitude: 210m

Р	Pitsaw	S	Settlement	Т	Timber, planks, poles	R	Path or road
F	Fire damage	В	Bark or root harvesting	K	Charcoal kiln	G	Gunfire
С	Cultivation	M	Mining	N	Traps or snares	0	Other

Qty of poles (5 – 15	cm)	Qty o	of timber (>	15 cn	n dbh)	Other distur	oances
section (m)	Live	Naturally dead	(Cut	Live	Naturally dead	(Cut	Within transect (qty)	Outside transect (qty)
			old	fresh			old	fresh		
0-50	7	1	0		7	0	0	0	F&K(1)	
50-100	3	0	1		2	0	2	0	F&K(1)	
100-150	3	0	0		0	0	4	1	F	
150-200	5	0	2		2	0	3	0		
200-250	17	0	0		1	0	6	0		
250-300	3	0	3		2	0	6	0	K(1)	
300-350	17	0	2		3	0	12	0	K(1)	
350-400	2	0	1		1	0	8	0	F&K(1)	
400-450	1	0	0		5	0	8	0	K(1)&R(2)	
450-500	18	0	4		0	0	1	0		
500-550	33	0	2		0	0	1	1		
550-600	3	0	0		2	0	0	3		
600-650	10	0	1		2	0	1	1		
650-700	25	0	0		1	0	1	0		
700-750	6	0	2		1	0	2	0		
750-800	10	0	0	1	7	0	2	4		
800-850	10	0	3		2	0	6	0		
850-900	15	0	5		3	0	1	3		
900-950	22	0	1		3	0	2	0		
950-1000	12	0	2		1	0	4	0		
Total	222	1	29	1	45	0	70	13	K(6),R(2)&F(4)	

GLS	Gentle lo	ower	GMS	S Ger	ntle mid-sl	ope	GU	S	Gen	tle upper	CL	Cliffs		
	slope								slope	Э				
SLS	Steep lo	wer	SMS	Ste	ep mid-slo	ppe	SU	S	Stee	p upper	VF	Valle	y floo	r
	slope							;	slope	Э				
1	to vegetat <pre> < 10 %</pre> <pre>sive alien</pre>	cove	er		2) – 50 %	cov	er		3	> 5	50 %	cover
LC	Lantana		CO	Cedrei		RU	Rubus		SJ	Stachytarpl			0	Other
	camara			odorat	а		sp.			jamaicensis	3			(specify)
High	n conserva	tion v	values											
S	Stream	М	Ming'ok	ο Т	Threate	ned pl	ant	Е	C	oastal forest	or E.	0	Oth	er e.g. edible
	or		_		species	•			Ar	c endemic s	pecies		mus	hrooms
	spring													

Section (m)	Topography	Canopy cover	Shrub layer	Ground layer	Invasive alien species	High conservation values	Other observations
0-50	GLS	1	2	2			
50-100	GLS	1	2	2			
100-150	GLS	2	2	2			
150-200	GLS	2	2	2			
200-250	GLS	2	2	2			
250-300	GLS	2	2	2			
300-350	GLS	2	2	2	LC		
350-400	GLS	2	2	2			
400-450	GLS	2	2	3			
450-500	GLS	2	2	3			
500-550	GLS	2	2	3			Dikdik trail
550-600	GLS	2	2	3			
600-650	GLS	3	2	3			Elephant shrew trails
650-700	GLS	3	2	2			Dikdik footprints
700-750	GLS	3	2	2			
750-800	GLS	3	2	2			
800-850	GLS	3	2	2			
850-900	GLS	3	2	2			
900-950	GLS	2	2	2			
950-1000	GLS	2	2	2			Duiker pellets and trail

Notes: The area is highly disturbed.

Appendix 5: Disturbance Transect 5

Names of recorders: Justine Gwegime, Yabay, Subira, & Yahaya Mponda

Date of survey: 16/11/2011 **District:** Kisarawe

Village: Mtamba Nearest sub-village: Chakenge

Village Forest Reserve: Ruvu South FR Transect Number: 5

Dominant vegetation: Bush & Shrubs Bearing: Southeast

 Start Point:
 Lat 9229130, Long 478347
 Altitude: 186m

 End Point:
 Lat 9228415, Long 479001
 Altitude: 209m

Р	Pitsaw	S	Settlement	Т	Timber, planks, poles	R	Path or road
F	Fire damage	В	Bark or root harvesting	K	Charcoal kiln	G	Gunfire
С	Cultivation	M	Mining	N	Traps or snares	0	Other

	Qt	y of poles (5 – 15	cm)	Qty	of timber (>	15 cm	n dbh)	Other distu	rbances
section (m)	Live	Naturally dead	C	Cut	Live	Naturally dead	(Cut	Within transect (qty)	Outside transect (qty)
			old	fresh			old	fresh		
0-50	9	0	6	0	1	0	4	0	F	
50-100	4	0	1	0	0	0	5	0	F	
100-150	4	0	6	0	2	0	2	0		
150-200	2	0	4	0	1	0	4	0	F	
200-250	8	0	1	0	0	0	1	0		
250-300	21	2	2	0	0	0	4	0	F	
300-350	7	2	2	0	0	0	1	0	F&K(1)	
350-400	7	0	7	2	1	0	2	0	F	
400-450	20	0	15	0	1	0	2	0	F	
450-500	17	0	10	0	3	0	5	0	F	
500-550	5	0	30	0	0	0	4	0	F	
550-600	10	0	15	0	0	0	2	0	F&K(2)	
600-650	23	0	8	0	0	0	9	0	F&K(1)	
650-700	2	0	7	0	0	0	2	0	F&K(2)	
700-750		0	6	4	1	0	8	5	F&K(1)	
750-800	6	0	6	0	4	0	3	0	F&K(1)	
800-850	16	0	11	0	1	0	4	0	F&K(1)	
850-900	18	0	10	0	0	0	5	0	F&K(1)	
900-950	6	0	7	0	1	0	2	0	F	
950-1000	5	0	6	5	1	0	5	9	K(2)	
Total	190	4	160	11	17	0	74	14	F(17)&K(12)	

GLS	Gentle I	lowe	r (GMS	Ger	ntle mid-sl	ope	GU		Gent slope	tle upper e	CL	Cliffs		
SLS	Steep lo	ower	5	SMS	Stee	ep mid-slo	ре	SU	S	Stee	p upper	VF	Valle	y floo	r
	slope								5	slop	Э				
1	to vegeta < 10 % asive alien	6 cov	/er	r		2	10	– 50 %	COV	ər		3	> :	50 %	cover
LC	Lantana		C	0 C	edrel	а	RU	Rubus		SJ	Stachytarph	neta		0	Other
	camara			0	dorat	a		sp.			jamaicensis				(specify)
Higl	h conserva	atior	ı valu	es											
S	Stream	М	Ming	g'oko	Т	Threate	ned pla	ant	Е	C	oastal forest	or E.	0	Oth	er e.g. edible
	or					species				Ar	c endemic s	pecies		mus	shrooms
	spring														

Section (m)	Topography	Canopy cover	Shrub layer	Ground layer	Invasive alien species	High conservation values	Other observations
0-50	GLS	1	2	2			
50-100	GLS	1	2	2			
100-150	GLS	1	2	2			
150-200	GLS	1	2	2			
200-250	GLS	1	2	2			
250-300	GLS	1	2	2			Giant pouched rat pit
300-350	GLS	1	2	2			
350-400	GLS	1	2	2			
400-450	GLS	1	2	2			
450-500	GLS	1	2	2			
500-550	GLS	1	2	2			
550-600	GLS	1	2	2			
600-650	GLS	1	2	2			
650-700	GLS	1	2	2			
700-750	GLS	2	2	2			
750-800	GLS	2	2	2			
800-850	GLS	2	2	2			
850-900	GLS	2	2	2			
900-950	GLS	2	2	2			
950-1000	GLS	2	2	2			

Appendix 6: Disturbance Transect 6

Site 1: Mtamba/Kola (Good Forest)

Names of recorders: Justine Gwegime, Yabay, Subira, & Yahaya Mponda

Date of survey: 17/11/2011 **District:** Kisarawe

Village: Kola Nearest sub-village: Mtamba

Village Forest Reserve: Ruvu South FR **Transect Number:** 6 **Dominant vegetation:** Good forest Bearing: Southeast

Start Point: Lat 9222011, Long 490852 Altitude: 224m **End Point:** Lat 9222486, Long 490084 Altitude: 258m

Ī	Р	Pitsaw	S	Settlement	Т	Timber, planks, poles	R	Path or road
Ī	F	Fire damage	В	Bark or root harvesting	K	Charcoal kiln	G	Gunfire
	С	Cultivation	M	Mining	N	Traps or snares	0	Other

	Qty	y of poles (5	- 15	cm)	Qty	of timber (>	15 cm	n dbh)	Other dis	turbances
section (m)	Live	Naturally dead	(Cut	Live	Naturally dead	(Cut	Within transect (qty)	Outside transect (qty)
			old	fresh			old	fresh		
0-50	10		4	1	2		6	1	K(3)&R(1)	
50-100	4		3		7		6		R(2)&K(2)	
100-150	2		4		1		7		K(1)	
150-200	2		4		3		10		K(2)&R(2)	
200-250	2	1	4		2		8		F&K(2)	
250-300	1		4				12		F&K(2)	
300-350	8					1	7		F&K(2)	
350-400		2	10				7		F&R(2)	
400-450	2		3			1	7		K(2)&R(1)	
450-500			5		2		6		K(2)&R(1)	
500-550	2		3	1	1		10		K(3)&F	
550-600	5		8				6		K(2)&R(2)	
600-650	4		19		1		3		F&K(2)	
650-700	2		12				15		F,K(4)&R(1)	
700-750	4		7		3		6		F,K(3)&P(1)	
750-800	4		3		11	1	2		K(4)	
800-850		1	6		1		8		K(1)	
850-900	6		3		1		12		F,K(1)&R(1)	
900-950	4		5				7	4	K(2)&F	
950-1000	3				1		9	3	K(4)&F	
Total	65	4	107	2	36	3	154	8	K(44),R(13),P (1)&F(11)	

GLS	Gentle I	owe	r G	MS	Ger	itle mid-sl	ope	GI	JS	Gen	tle upper	CL	Cliffs		
	slope									slop	е				
SLS	Steep lo	ower	S	MS	Stee	ep mid-slo	ре	SU	JS	Stee	p upper	VF	Valle	y floo	r
	slope									slop	е				
Key	to vegeta	tion	cover		•										
1	< 10 %	6 cov	/er			2	10	0 – 50 %	6 cov	/er		3	> 5	50 %	cover
Inva	sive alien	spe	cies												
LC	Lantana		CC) C	edrel	а	RU	Rubus	3	SJ	Stachytarph	neta		0	Other
	camara			0	dorat	а		sp.			jamaicensis	;			(specify)
High	conserva	ation	value	S											
S	Stream	М	Ming'	oko	Т	Threater	ned pl	ant	Е	C	oastal forest	or E.	0	Othe	er e.g. edible
	or					species				Aı	rc endemic s	pecies		mus	hrooms
	spring														

Section (m)	Topography	Canopy cover	Shrub layer	Ground layer	Invasive alien species	High conservation values	Other observations
0-50	GLS	1	2	2			
50-100	GLS	1	2	2			
100-150	GLS	1	2	2			
150-200	GLS	1	2	2			
200-250	GUS	1	2	2			
250-300	GUS	1	2	2			
300-350	GLS	1	2	2			
350-400	GLS	1	2	2			Hyrax pellets
400-450	GLS	2	2	2			
450-500	GLS	2	2	2			
500-550	GLS	2	2	2			
550-600	GLS	2	2	2			Dikdik pellets
600-650	GUS	2	2	2			
650-700	GUS	1	2	2			
700-750	GUS	1	2	2			
750-800	GUS	1	2	2			
800-850	GLS	1	2	2			
850-900	GLS	1	2	2			
900-950	GLS	1	2	2			Giant pouched rat pit
950-1000	GLS	1	2	2			

Notes: The area is highly affected by charcoal making.

Appendix 7: Disturbance Transect 7

Names of recorders: Justine Gwegime, Yabay, Subira, & Yahaya Mponda

Date of survey: 17/11/2011 **District:** Kisarawe

Village: Mtamba Nearest sub-village: Kola

Village Forest Reserve: Ruvu South FRTransect Number: 7Dominant vegetation: Bush/ShrubsBearing: Southeast

 Start Point:
 Lat 9222089, Long 489537
 Altitude: 262m

 End Point:
 Lat 9222159, Long 490436
 Altitude: 263m

Р	Pitsaw	S	Settlement	Т	Timber, planks, poles	R	Path or road
F	Fire damage	В	Bark or root harvesting	K	Charcoal kiln	G	Gunfire
С	Cultivation	M	Mining	N	Traps or snares	0	Other

	Qt	y of poles (5 – 15	cm)	Qty	of timber (>	15 cm	dbh)	Other distu	ırbances
Section (m)	Live	Naturally dead	(Cut	Live	Naturally dead	C	Cut	Within transect (qty)	Outside transect (qty)
			old	fresh			old	fresh		
0-50	0	0	5	0	1	0	7	0	K(3)&R(1)	
50-100	0	0	8	4	0	0	5	1	F,K(2)&R(2)	
100-150	0	0	13	0	0	0	14	0	F,K(2)&R(2)	
150-200	3	0	12	0	0	0	8	1	K(2)	
200-250	8	0	5	0	1	0	5	0	K(1)&R(1)	
250-300	5	0	1	0	0	0	12	0	K(2)	
300-350	5	0	6	0	1	0	7	0	K(2)&R(2)	
350-400	1	0	10	0	0	0	7	1	K(2)	
400-450	0	0	10	0	0	0	10	0	K(2)&P(1)	
450-500	1	0	8	0	0	0	8	0	F,K(6)&R(1)	
500-550	3	0	9	0	0	0	9	0	F,K(2)&R(1)	
550-600	3	0	4	0	0	0	3	0	P(1)&R(1)	
600-650	9	1		0	0	0	5	0	K(3)&R(1)	
650-700	1	0	1	0	2	0	1	0		
700-750	17	0		2	0	0	0	1		
750-800	18	0	5	0	1	0	5	0	K(1)	
800-850	26	0	4	1	0	0	0	0	R(1)	
850-900	6	0	9	1	3	0	4	0	K(3)&P	
900-950	3	0	5	27	4	0	2	0	R(1)	
950-1000	15	0	9	3	0	0	6	0	R(1)	
Total	124	1	124	38	13	0	118	4	K(33),R(15), P(3)&F(4)	

GLS	Gentle le slope	ower	GM	S Ger	ntle mid-sl	ope	GU	l	Sent slope	le upper e	CL	Cliffs			
SLS	Steep lo	wer	SM	S Stee	ep mid-slo	ре	SU	S	Stee	p upper	VF	Valley	/ floo	r	
	slope							s	lope	9					
1	to vegetat < 10 % sive alien	cov	er		2	10) – 50 %	cove	er		3	> 5	50 %	cover	
LC	Lantana		CO	Cedrel	la	RU	Rubus	;	SJ	Stachytarph	eta		0	Other	
	camara			odorat	а		sp.			jamaicensis				(specify)	
High	conserva	ation	values												
S	Stream	М	Ming'ok	o T	Threate	ned pl	ant	Е	Co	pastal forest	or E.	0	Othe	er e.g. edible)
	or		_		species				Ar	c endemic sp	pecies		mus	hrooms	
	spring														

Section (m)	Topography	Canopy cover	Shrub layer	Ground layer	Invasive alien species	High conservation values	Other observations
0-50	GLS	2	2	2			
50-100	GLS	2	2	2			
100-150	GLS	2	2	2			
150-200	GLS	2	2	2			Giant pouched rat
200-250	GLS	2	2	2			Millipedes
250-300	GLS	2	2	2			
300-350	GLS	2	2	2			
350-400	GLS	2	2	2			
400-450	GLS	2	2	2			
450-500	GLS	2	2	2			
500-550	GLS	2	2	2			Mushroom
550-600	GLS	2	2	2			
600-650	GLS	2	2	2			
650-700	GLS	2	2	2			
700-750	GLS	2	2	2			Shrews trails, Animal footprints
750-800	GLS	2	2	2			Shrews trails and footprints
800-850	GLS	2	2	2			
850-900	GLS	2	2	2			Dikdik footprints
900-950	GLS	2	2	2			
950-1000	GLS	2	2	2			

Notes: The area is highly affected by charcoal making and footpaths.

Appendix 8: Disturbance Transect 8

Names of recorders: Justine Gwegime, Yabay, Subira, & Yahaya Mponda

Date of survey: 18/11/2011 **District:** Kisarawe

Village: Mtamba Nearest sub-village: Kola

Village Forest Reserve: Ruvu South FRTransect Number: 8Dominant vegetation: WoodlandBearing: Northeast

 Start Point:
 Lat 9229518, Long 487710
 Altitude: 208m

 End Point:
 Lat 9228905, Long 488383
 Altitude: 221m

	Р	Pitsaw	S	Settlement	Т	Timber, planks, poles	R	Path or road
Ī	F	Fire damage	В	Bark or root harvesting	K	Charcoal kiln	G	Gunfire
	С	Cultivation	M	Mining	N	Traps or snares	0	Other

	Qty o	f poles (5 –	15 cn	n)	Qty o	f timber (>	15 cm	dbh)	Other disturb	ances
Section (m)	Live	Naturally dead	(Cut	Live	Naturally dead	(Cut	Within transect (qty)	Outside transect (qty)
			old	fresh			old	fresh		
0-50	10	0	1	0	1	0	2	3	F	
50-100	16	0	7	0	1	0	5	1	F,K(1)&R(1)	
100-150	19	0	7	0	1	0	1	0	N(1) &F	
150-200	21	0	21	0	0	0	8	1	K(1) &F	
200-250	25	0	10	0	3	0	2	0	K(1) &F	
250-300	11	0	0	0	0	0	7	0	F	
300-350	8	0	7	0	3	0	7	0	K(1),R(1)&F	
350-400	5	1	0	0	4	0	10	0	K(1)&F	
400-450	10	0	4	0	1	0	6	0	K(2)&F	
450-500	5	0	1	1	2	0	7	0	K(2)&F	
500-550	5	0	4	0	2	0	6	0	K(1)&F	
550-600	4	0	6	0	3	0	5	0	K(1),R(1)&F	
600-650	4	0	3	0	0	0	6	0	K(2)&F	
650-700	12	0	1	0	2	0	9	0	K(2)&F	
700-750	15	0	5	0	1	0	7	0	K(1)	
750-800	17	0	4	0	1	0	4	0	K(2)&F	
800-850	2	0	0	1	0	0	7	1	K(1),R(1)&F	
850-900	3	0	3	2	0	2	8	0	K(1) &R(1)	
900-950	7	0	2	0	0	1	10	0	K(1)	
950-1000	8	0	1	0	1	0	7	0	K(1)&R(1)	
Total	207	1	87	4	26	3	124	6	F(16),K(22)& R(6)	

GLS	Gentle slope	lowe	r G	MS	Gen	itle mid-sl	ope	GU		Gen slope	tle upper e	CL	Cliffs		
SLS	Steep lo	ower	S	MS	Stee	ep mid-slo	ре	SU	S	Stee	p upper	VF	Valle	y floo	r
	slope								;	slop	е				
1	to vegeta < 10 % sive alien	% cov	/er			2	10) – 50 %	COV	er		3] > t	50 %	cover
LC	Lantana		CO) C	edrel	а	RU	Rubus		SJ	Stachytarpl	heta		0	Other
	camara			0	dorata	а		sp.			jamaicensis	3			(specify)
Higl	n conserv	atior	ı value	S											
S	Stream	М	Ming'	oko	Т	Threater	ned pl	ant	Е	C	oastal forest	or E.	0	Oth	er e.g. edible
	or					species				Ar	c endemic s	pecies		mus	hrooms
	spring														

Section (m)	Topography	Canopy cover	Shrub layer	Ground layer	Invasive alien species	High conservation values	Other observations
0-50	GLS	2	2	2			
50-100	GLS	2	2	2			
100-150	GLS	2	2	2			Snail carapace
150-200	GLS	2	2	2			
200-250	GLS	2	2	2			
250-300	GLS	2	2	2			
300-350	GLS	2	2	2			
350-400	GLS	2	2	2			
400-450	GLS	2	2	2			
450-500	GLS	2	2	2			
500-550	GLS	2	2	2			Centipede
550-600	GLS	2	2	2			
600-650	GLS	1	2	2			
650-700	GLS	1	2	2			
700-750	GLS	1	2	2			
750-800	GLS	1	2	2			
800-850	GLS	2	2	2			
850-900	GLS	2	2	2			
900-950	GLS	2	2	2			
950-1000	GLS	2	2	2			Rabbit(seen)

Appendix 9: Disturbance Transect 9

Site 4: Kifuru/Kazimzumbwi (Recently deforested)

Names of recorders: Justine Gwegime

Date of survey: 19/11/2011 **District:** Kisarawe

Village: Kifuru/Kazimzumbwi Nearest sub-village: Kifuru

Village Forest Reserve: Ruvu South FR Transect Number: 9

Dominant vegetation: Miombo woodlandBearing: WestStart Point: Lat 9232741, Long 499848Altitude: 234mEnd Point: Lat 9232949, Long 498897Altitude: 223m

Р	Pitsaw	S	Settlement	Т	Timber, planks, poles	R	Path or road
F	Fire damage	В	Bark or root harvesting	K	Charcoal kiln	G	Gunfire
С	Cultivation	M	Mining	N	Traps or snares	0	Other

	Qt	y of poles (5 – 15	cm)	Qty o	of timber (>	15 cn	n dbh)	Other distu	ırbances
section (m)	Live	Naturally dead	(Cut	Live	Naturally dead	(Cut	Within transect (qty)	Outside ttransect (qty)
			old	fresh			old	fresh		
0-50	0	0	25	0	0	0	3	0	K(2)	
50-100	1	0	30	0	0	0	7	0	K(1),R(1)&F	
100-150	0	0	25	0	0	0	3	0	K(4),R(1)&F	
150-200	1	0	47	0	0	0	3	0	K(1)	
200-250	0	0	27	0	0	0	1	0	K(3)	
250-300	3	0	19	0	0	0	7	0	K(3)	
300-350	3	0	16	0	0	0	6	0	K(2)	
350-400	5	0	29	0	0	0	4	0	K(1)	
400-450	0	0	12	0	0	0	6	0	K(5)	
450-500	2	0	29	0	0	0	2	0	K(5)	
500-550	7	0	12	0	0	0	6	0	K(2)	
550-600	6	0	35	0	0	0	7	0	K(1)&F	
600-650	3	0	5	0	0	0	1	0	K(3)&F	
650-700	4	0	19	0	0	0	11	0	K(2)&F	
700-750	6	0	15	0	0	0	1	0	K(1)&F	
750-800	5	0	3	0	0	0	3	0	K(1)&F	
800-850	5	0	20	3	0	0	1	0	K(1)&F	
850-900	6	0	7	0	0	0	4	0	K(1)&R(1)	
900-950	6	0	3	0	0	0	0	0	K(1)&F	
950-1000	5	0	10	0	0	0	1	0	K(1)&F	
Total	68	0	388	3	0	0	77	0	K(41),R(3)& F(10)	

GLS	Gentle I	owe	r	GMS	Ger	•			tle upper	CL	Cliffs				
	slope									slope	Э				
SLS	Steep lo	ower		SMS	Stee	ep mid-slo	ре	SU	S	Stee	p upper	VF	Valley	, floo	r
	slope							slope							
Key	to vegetation cover		er		2	1¢) – 50 %	COV	· er		3		50 %	cover	
Inva	rasive alien species						, 00 /0	001	٠.				,0	00101	
						D	5 /			0, 1, ,				0.11	
LC	Lantana				edrel		RU	Rubus		SJ	Stachytarph			0	Other
	camara			0	dorat	а		sp.			jamaicensis				(specify)
High	h conservation values														
S	Stream M Ming'oko T Threatened		ned pl	ant	E Coastal fore:		oastal forest	forest or E. O		Othe	er e.g. edible				
	or					species			l A		c endemic s	pecies		mus	hrooms
	spring														

Section (m)	Topography	Canopy cover	Shrub layer	Ground layer	Invasive alien species	High conservation values	Other observations
0-50	GLS	1	2	2			
50-100	GLS	1	2	2			
100-150	GLS	1	2	2			
150-200	GLS	1	2	2			
200-250	GLS	1	2	2			
250-300	GLS	2	2	2			
300-350	GLS	2	2	2			Rodent pit, aardvark path
350-400	GLS	2	2	2			Dikdik trail
400-450	GLS	2	2	2			
450-500	GLS	2	2	2			
500-550	GLS	2	2	2			Dikdik pellets, duiker trail
550-600	GLS	2	1	2			Dikdik pellets, duiker trail
600-650	GLS	2	1	2			
650-700	GLS	2	1	2			
700-750	GLS	2	1	2			
750-800	GLS	2	1	2			
800-850	GLS	2	2	2			
850-900	GLS	2	2	2			
900-950	GLS	1	2	2			
950-1000	GLS	1	2	2			

Notes: Reasonable number of duiker and dikdik pellets recorded.

Appendix 10: Disturbance Transect 10

Names of recorders: Justine Gwegime

Date of survey: 19/11/2011 **District:** Kisarawe

Village: Kazimzumbwi/Kifuru Nearest sub-village: Kifuru

Village Forest Reserve: Ruvu South FRTransect Number: 10Dominant vegetation: Disturbed evergreen forestBearing: Southeast

 Start Point:
 Lat 9233504, Long 498369
 Altitude: 274m

 End Point:
 Lat 9232701, Long 497857
 Altitude: 214m

Р	Pitsaw	S	Settlement	T	Timber, planks, poles	R	Path or road
F	Fire damage	В	Bark or root harvesting	K	Charcoal kiln	G	Gunfire
С	Cultivation	M	Mining	N	Traps or snares	0	Other

	Qty	y of poles (5 – 15	cm)	Qty o	of timber (>	15 cn	n dbh)	Other dist	urbances
section (m)	Live	Naturally dead	C	Cut	Live	Naturally dead	(Cut	Within transect (qty)	Outside transect (qty)
			old	fresh			old	fresh		
0-50	1	0	8	0	0	0	6	0	F	F
50-100	0	0	20	0	0	0	6	0	K(1)	
100-150	0	0	5	0	0	0	0	0	K(1)	
150-200	5	0	15	2	0	0	2	0	R(1)&F	F
200-250	0	0	11	0	0	0	1	0	K(1)&F	
250-300	10	0	0	0	0	0	1	0	K(2)	
300-350	7	0	6	0	0	0	3	0	K(2)	
350-400	6	0	3	0	0	0	4	0	K(2)&F	
400-450	6	0	13	0	0	0	1	0	F	
450-500	0	0	5	0	0	0	5	0	R(1)	
500-550	0	0	4	0	0	0	2	0	K(1)	
550-600	3	0	10	0	0	0	2	0	K(1)	
600-650	3	0	16	0	0	0	12	0	K(2)	
650-700	0	0	15	0	0	0	5	0	K(3)	
700-750	0	0	4	0	0	0	1	0	K(1)	
750-800	2	0	7	0	0	4	0	0	K(1)	
800-850	3	0	12	0	0	0	1	0	K(1)	
850-900	0	0	16	1	0	0	7	0	K(2)&R(1)	
900-950	0	0	14	5	0	0	1	0	K(3)	
950-1000	6	0	10	0	0	0	1	0	K(1)&F	
Total	52	0	194	8	0	4	61	0	F(6),K(25) &R(3)	F(2)

GLS	slope					ope	GU		Gent slope	tle upper e	CL	Cliffs			
SLS	Steep lo	ower		SMS	Stee	ep mid-slo	ре	SU	S :	Stee	p upper	VF	Valley	/ floo	r
	slope							;	slope	e					
1	nvasive alien species					2	10) – 50 %	COV	er		3	> 5	60 %	cover
LC	Lantana		(CO	Cedrel	а	RU	Rubus		SJ	Stachytarph	eta		0	Other
	camara			(odorata	а		sp.			jamaicensis				(specify)
High	conserva	atior	ı valı	ues											
S	Stream	М	Min	ıg'oko	Τ	Threate	ned pl	ant	Е	Co	oastal forest	or E.	0	Othe	er e.g. edible
	or species							Ar	c endemic sp	pecies		mus	hrooms		
	spring														

Section (m)	Topography	Canopy cover	Shrub layer	Ground layer	Invasive alien species	High conservation values	Other observations
0-50	SUS	1	1				Duiker footprints
50-100	SUS	1	1				
100-150	SUS	1	1				
150-200	SLS	1	1				
200-250	SLS	1	1				
250-300	SLS	1	1				
300-350	SLS	1	2				
350-400	SLS	1	2				
400-450	GUS	1	2				
450-500	GUS	1	2				
500-550	GUS	2	2				
550-600	GUS	2	2				
600-650	GUS	2	2				
650-700	GUS	2	2				
700-750	GUS	2	2				Bushpig dung and footprints
750-800	GUS	1	2				Bushpig footprints
800-850	GUS	1	2				
850-900	GUS	1	2				Bushpig footprints
900-950	GUS	1	2				Bushpig footprints
950-1000	GUS	1	2				

Notes: The site is likely to be bush pig playing /resting ground.

Appendix 11: Disturbance Transect 11

Names of recorders: Justine Gwegime

Date of survey: 20/11/2011 **District:** Kisarawe

Village: Kazimzumbwi/Kifuru Nearest sub-village: Kifuru

Village Forest Reserve: Ruvu South FRTransect Number: 11Dominant vegetation: ScrubsBearing: Southwest

 Start Point:
 Lat 9235700, Long 494854
 Altitude: 176m

 End Point:
 Lat 9234788, Long 495049
 Altitude: 186m

Р	Pitsaw	S	Settlement	Т	Timber, planks, poles	R	Path or road
F	Fire damage	В	Bark or root harvesting	K	Charcoal kiln	G	Gunfire
С	Cultivation	M	Mining	N	Traps or snares	0	Other

	Qt	y of poles (5 – 15	cm)	Qty o	of timber (>	15 cm	n dbh)	Other disturbances		
Section (m)	Live	Naturally dead	C	Cut	Live	Naturally dead	(Cut	Within transect (qty)	Outside transect (qty)	
			old	fresh			old	fresh			
0-50	5	0	0	0	0	0	3	0	K(1)&F	F	
50-100	7	0	11	0	0	0	4	0	K(2)		
100-150	10	0	5	0	0	0	6	0	K(2)&F		
150-200	11	0	8	0	0	0	7	0	K(2)	F	
200-250	6	0	1	0	0	0	4	0	K(2)		
250-300	11	0	9	0	1	0	8	0	K(1)	F	
300-350	4	0	2	0	1	0	2	0	K(2)&F		
350-400	3	0	3	0	1	0	1	0	R(2),K(1)&F	F	
400-450	6	0	5	0	0	0	3	0	K(2),R(1)&F		
450-500	6	0	12	0	0	0	7	0	K(2)&F		
500-550	1	0	8	0	0	0	7	0	K(4),F&R(1)	F	
550-600	0	0	6	0	2	0	2	0	K(4)&F		
600-650	15	0	5	0	0	0	0	0	K(2),R(1)&F		
650-700	7	0	11	0	1	0	3	0	K(1)		
700-750	3	0	1	0	0	0	8	0	K(2)&F		
750-800	3	2	7	0	0	0	1	0	K(2)		
800-850	2	0	0	0	0	0	2	0			
850-900	4	0	4	0	0	0	1	0	K(2)		
900-950	2	0	1	0	0	0	1	0	F	F	
950-1000	6	0	11	0	0	0	1	0	F&K(2)		
Total	112	2	110	0	6	0	71	0	K(36),F(12)& R(4)	F(6)	

GLS	Gentle I	ower	GM	S Ger	ntle mid-sl	ope	GU	GUS Gentle upper slope			CL	Cliffs		
SLS	Steep Id	wer	SM	S Stee	ep mid-slo	ре	SU	S	Stee	p upper	VF	Valley	/ floo	r
	slope								slope	e				
1	to vegeta	6 cov	er		2	10) – 50 %	COV	er		3	> 5	50 %	cover
LC	Lantana		CO	Cedrel	la	RU	Rubus		SJ	Stachytarph	neta		0	Other
	camara			odorat	а		sp.			jamaicensis				(specify)
High	conserva	ation	values											
S	Stream	М	Ming'ol	o T	Threate	ned pl	ant	Е	Co	pastal forest	or E.	0	Othe	er e.g. edible
	or				species				Ar	c endemic s _l	pecies		mus	hrooms
	spring													

Section (m)	Topography	Canopy cover	Shrub layer	Ground layer	Invasive alien species	High conservation values	Other observations
0-50	GUS	1	2	3			Hyena dung, bushpig pellets,dikdik footprints
50-100	GUS	1	2	3			
100-150	GUS	1	2	3			
150-200	GUS	1	2	3			
200-250	GUS	1	2	2			
250-300	GUS	2	2	2			
300-350	GLS	2	2	2			Dikdik footprint
350-400	GLS	2	2	2			Rabbit
400-450	GLS	2	2	2			
450-500	GLS	1	2	2			Bushpig footprints
500-550	GLS	1	2	2			
550-600	GLS	2	2	2			
600-650	GLS	2	2	2			
650-700	GLS	2	2	2			Dikdik/Suni trail, duiker footprints
700-750	GLS	2	2	2			
750-800	GLS	2	2	2			Bushpig footprints
800-850	GLS	2	2	2			
850-900	GLS	2	2	2			Bushpig footprints
900-950	GLS	2	2	2			
950-1000	GLS	2	2	2			

Notes: The site is highly affected by charcoal making.

Appendix 12: Disturbance Transect 12

Site 5: Mpiji (Good Forest)

Names of recorders: Justine Gwegime

Date of survey: 21/11/2011 **District:** Kisarawe

Village: Mpiji/Kazimzumbwi Nearest sub-village: Kifuru

Village Forest Reserve: Ruvu South FR Transect Number: 12

Dominant vegetation: Scrub/Acacia Woodland Bearing: Southwest

 Start Point:
 Lat 9239885, Long 495711
 Altitude: 152m

 End Point:
 Lat 9238900, Long 495570
 Altitude: 158m

Р	Pitsaw	S	Settlement	T	Timber, planks, poles	R	Path or road
F	Fire damage	В	Bark or root harvesting	K	Charcoal kiln	G	Gunfire
С	Cultivation	M	Mining	N	Traps or snares	0	Other

	Qty	cm)	Qty o	of timber (>	15 cn	n dbh)	Other disturbances			
Section (m)	Live	Naturally dead	C	Cut	Live	Naturally dead	Cut		Within transect (qty)	Outside transect (qty)
			old	fresh			old	fresh		
0-50	0	0	2	0	0	0	1	0	F	F
50-100	0	0	3	0	0	0	0	0	F	F
100-150	0	0	8	0	0	0	0	0	F	F
150-200	8	0	3	0	1	0	1	0	F	F
200-250	2	0	11	0	0	0	2	0	K(4)	F
250-300	5	0	7	0	1	0	4	0	K(1)&F	F
300-350	5	0	3	0	0	0	1	0	K(3)&F	F
350-400	1	0	0	0	0	3	0	0	F	
400-450	8	0	9	0	0	0	1	0	K(2)&F	F
450-500	3	0	6	0	0	0	4	0	K(1)&F	
500-550	4	0	5	0	0	0	4	0	K(3)&F	F
550-600	4	0	18	0	0	0	4	0	K(3)&F	F
600-650	8	0	2	0	0	0	3	0	K(2)&F	F
650-700	3	0	0	0	2	0	3	0	F&R(1)	F
700-750	5	0	7	0	0	0	3	0	K(1)&F	
750-800	11	0	12	0	0	0	4	0	K(4 &F	F
800-850	9	0	8	0	3	0	7	0	K(1)&F	F
850-900	14	0	7	0	0	0	3	0	K(3)&F	
900-950	6	0	6	0	0	0	5	0	K(1)&F	F
950-1000	1	0	12	0	0	0	1	0	K(3)	
Total	97	0	129	0	7	3	51	0	F(18),K(32)& R(1)	F(15)

GLS	Gentle I	lowe	r GM	S	Gent	de mid-sl	ope	GU	JS	Gen	tle upper e	CL	Cliffs		
SLS		ower	SM	S	Stee	p mid-slo	ре	SU	JS		p upper	VF	Valley	/ floo	r
1	to vegeta < 10 % asive alien	% co\	/er			2	10) – 50 %	6 co			3	> 5	50 %	cover
LC	Lantana		CO		drela		RU	Rubus	9	SJ	Stachytarpi	heta		0	Other
	camara				rata			sp.			jamaicensis	S			(specify)
Higl	h conserva	ation	values												
S	Stream	М	Ming'ok	o T	Т	Threater	ned pl	ant	Е		oastal forest		0		er e.g. edible
	or					species				A	rc endemic s	pecies		mus	hrooms
	spring														

Section (m)	Topography	Canopy cover	Shrub layer	Ground layer	Invasive alien species	High conservation values	Other observations
0-50	GLS	1	1	2			
50-100	GLS	1	1	2			
100-150	GLS	1	1	2			
150-200	GLS	1	1	2			
200-250	GLS	1	2	2		S	
250-300	GLS	1	2	2		S	
300-350	GLS	1	2	2		S	
350-400	GLS	1	2	2			
400-450	GLS	1	2	2		S	
450-500	GLS	2	2	2			
500-550	GLS	2	2	3			
550-600	GLS	2	2	3			
600-650	GLS	2	2	3			
650-700	GLS	1	2	3			Bushpig footprint
700-750	GLS	1	2	3			
750-800	GLS	1	2	3			Aardvark pit
800-850	GLS	1	2	2			
850-900	GLS	1	2	2			
900-950	GLS	1	2	2			
950-1000	GLS	1	2	2			

Appendix 13: Disturbance Transect 13

Names of recorders: Justine Gwegime

Date of survey: 21/11/2011 **District:** Kisarawe

Village: Mpiji Nearest sub-village: Kazimzumbwi

Village Forest Reserve: Ruvu South FRTransect Number: 13Dominant vegetation: WoodlandBearing: Northeast

End Point: Lat 9239600, Long 494874 **Altitude:** 188m

Р	Pitsaw	S	Settlement	Т	Timber, planks, poles	R	Path or road
F	Fire damage	В	Bark or root harvesting	K	Charcoal kiln	G	Gunfire
С	Cultivation	M	Mining	N	Traps or snares	0	Other

	Qt	y of poles (5 – 15	cm)	Qty	of timber (>	15 cm	n dbh)	Other disturbances		
Section (m)	Live	Naturally dead	C	Cut	Live	Naturally dead	Cut		Within transect (qty)	Outside transect (qty)	
			old	fresh			old	fresh			
0-50	0	0	3	0	0	0	3	0	K(1)&F	F	
50-100	2	0	6	0	0	0	4	0	K(1)&F	F	
100-150	0	0	9	0	0	0	5	0	K(1)&F	F	
150-200	0	0	10	0	0	0	4	0	K(1)&F	F	
200-250	10	0	9	0	1	0	3	0	F		
250-300	16	0	4	0	0	0	4	9	K(1)&F	F	
300-350	10	0	1	0	0	0	6	0	K(1)		
350-400	16	0	6	0	1	0	4	0	K(1)	F	
400-450	3	0	5	0	0	0	7	0	K(1)	F	
450-500	8	0	10	0	0	0	0	0		F	
500-550	0	0	9	0	0	0	4	0	K(3)&F	F	
550-600	6	0	28	0	0	0	8	0	K(1)&F		
600-650	0	0	28	0	0	0	5	0	K(2)&F	F	
650-700	10	0	11	0	1	0	7	0	K(3)&F		
700-750	0	0	14	0	0	0	2	0	F	F	
750-800	5	0	8	0	0	0	3	0	K(1)		
800-850	12	0	12	0	0	0	2	0	K(1)&F		
850-900	6	0	6	0	0	0	1	0	K(3)&F	F	
900-950	15	0	15	0	0	0	2	0	K(1)		
950-1000	5	0	5	0	0	0	5	0	K(2)&F		
Total	124	0	199	0	3	0	79	9	K(25)&F(14)	F(12)	

GLS	Gentle I	owe	r	GMS	Ger	itle mid-sl	ope	GU		Sentle upper lope	CL	Cliffs		
SLS	-	ower		SMS	Stee	ep mid-slo	ре	SU	s s	Steep upper lope	VF	Valle	y floo	r
1	to vegeta < 10 % sive alien	6 cov	/er			2	10) – 50 %		•	3] > t	50 %	cover
LC	Lantana		С	-	edrel		RU	Rubus	,	SJ Stachytarpl			0	Other
	camara			00	dorata	а		sp.		jamaicensis	1			(specify)
High	conserva	atior	ı valı	ues										
S	Stream	M	Min	g'oko	Т	Threater	ned pl	ant	Е	Coastal forest	or E.	0	Othe	er e.g. edible
	or					species				Arc endemic s	pecies		mus	hrooms
	spring													

Section (m)	Topography	Canopy cover	Shrub layer	Ground layer	Invasive alien species	High conservation values	Other observations
0-50	GLS	1	2	2			
50-100	GLS	1	2	2			
100-150	GLS	1	2	2			
150-200	GLS	1	2	2			
200-250	GLS	1	2	2			
250-300	GLS	1	2	2			Dikdik pellets
300-350	GLS	1	2	3			Duiker footprints
350-400	GLS	1	2	3			
400-450	GLS	1	1	3			
450-500	GLS	1	1	3			Bushpig footprints
500-550	GLS	1	1	3			
550-600	GLS	1	2	3			bushpig footprints, buffalo footprints, duiker footprints
600-650	GLS	1	2	3		S	
650-700	GLS	1	2	3			
700-750	GLS	1	1	2			
750-800	GLS	1	1	2			
800-850	GLS	1	1	2			
850-900	GLS	1	1	3			Duiker/suni footprints
900-950	GLS	1	1	3			
950-1000	GLS	1	2	3			

Notes: Area appears to be used by medium to large mammals.